SUlVEFisliltcili

VOLUME IV
 (GENERIC 217)

囲mine
sx-200

WARNING

This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions manual, may cause interference to radio communications. It has been tested and found to comply with the limits for a Class A computing device pursuant to Subpart J of Part 15 of FCC Rules, which are designed to provide reasonable protection against such interference when operated in a commercial environment. Operation of this equipment in a residential area is likely to cause interference, in which case the user, at his own expense, will be required to take whatever measures may be required to correct the interference.
sx-100

WARNING

This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions manual, may cause interference to radio communications. It has been tested and found to comply with the limits for a Class A computing device pursuant to Subpart J of Part 15 of FCC Rules, which are designed to provide reasonable protection against such interference when operated in a commercial environment. Operation of this equipment in a residential area is likely to cause interference, in which case the user, at his own expense, will be required to take whatever measures may be required to correct the interference.

SX-100 ${ }^{\circ} / \mathrm{SX}-200^{\circ}$
 SUPERSWITCH"
 ELECTRONIC PRIVATE AUTOMATIC BRANCH EXCHANGE TROUBLESHOOTING

GENERIC 217

CONTENTS PAGE

Introduction .. 1
Reason for Reissue ... 2
The SUPERSET $3^{\text {TM }}$ and SUPERSET $4^{\text {TM }}$ Sets \ldots.
Basic Troubleshooting Philosophy 2
2. CIRCUIT CARD AND MAINTENANCE PANEL AIDS 2

Card Shelf 2
IPC Card .. 3
Scanner Card .. 3
Tone Control Card .. 5
Console Control Card (Basic) ... 9
Console Control Line and Data LEDs.................
Remote Control RMAT 10
Receiver Card 10
Trunk Card 10
Standard Line Card .. 11
The SUPERSET ${ }^{\text {TM }}$ Line Card...................................
RAC 11
Maintenance Panel ... 11
Cards External to the Shelf 13
The SX-200 Interconnect Card 13
The SX-200 Power Fail Transfer Card 15
The Console Interface Card 15
Shelf Backplane ... 15
3. CONSOLE AND TEST LINE MAINTENANCE FUNCTIONS 19

Console Maintenance Functions 19
ALARM RESET Button ... 22
IDENT Button .. 22
Error Codes .. 23
Power Fail Transfer Switch 23
Test Line Functions ... 23
Direct Trunk Access ... 24
To Busy and Clear Busy-Out Receivers and Speech Paths . . 25
Clear All Errors .. 25
Select a Speech Path and/or a Receiver 25
Slot Initialization Activate 26
Forced Trunk Release .. 27
Copyright of MITEL Corporation 1984
TM - Trademark of MITEL Corporation
CONTENTS (CONT'D) PAGE
4. CONSOLE FUNCTIONS AND ERROR CODES 27
Current Speech Path Display 27
Line and Trunk Status Display 27
5. SYSTEM OPERATION 53
General 53
Extension Operation 53
Console 58
Dialing a Trunk (From a Console) 58
Hook-Flash 60
Incoming Calls (GS/LS Trunks) 60
SUPERSET 4 Set Operation 61
Tables 65
6. SX-IOO/SX-200 POWER SUPPLY 72
AC/DC Converter 72
DC/DC Converter 72
Ringing Generator 72
Out-of-Tolerance 72
Reserve Battery Backup and Charger 73
Fusing 73
7. REMOTE MAINTENANCE, ADMINISTRATION AND TEST SYSTEM 83
RMAT System 83
APPENDIX A
MITEL ACTION PROCEDURES A-I
APPENDIX B
SYSTEM OVERVIEW B-I
APPENDIX CSYSTEM CABLINGC-I
APPENDIX D
SX-100 MECHANICAL INFORMATION D-1/2
APPENDIX E
SX-200 MECHANICAL INFORMATION E-1/2
APPENDIX F
POWER CHECKS F-1/2
APPENDIX G
TROUBLESHOOTING MAPs G-1/2
APPENDIX H
The SUPERSET 4 Set H-I

CONTENTS (CONT'D)

APPENDIX I
The SUPERSET 3 Set I.
LIST OF ILLUSTRATIONS
FIGURE TITLE P،
2-I Equipment Shelf
2-2 Equipment Cards
2-3(a Circuit Cards
2-4 Maintenance Panel
2-5 SX-200 Interconnect Card
2-6 SX-200 Power Fail Transfer Card
$2-7$ SX-200 Console Interface Card
2-8 SX-100 Interconnect, Conso
Power Fail Transfer Card Interface,
Backplane
2-10 Equipment Shelf
Attendant Conso
3-2
3-3 Typical Identification Display
3-4 Receiver Equipment Numbers
Programming
5-I Speech Paths
5-2 Select a Speech Path
5-3 Inside Call
5-4 Outside Call - 0 and 1 Dialing Restriction
5-5 Outside Call - Multi-Digit
SMDR or ARS in Effect
5-6 Equipment Numbering
6-1 SX-200 Power Supply
6-3 SX-100 Interconnect Card
6-4 SX-200 Back Door Electrical Schematic
6-5 SX-100 Reserve Battery Backup
6-6 Reserve Battery Charger
6-7 Power Supply Block Diagram
LIST OF TABLES
TITLEP
2-1 Scanner Displays
2-2 Switch Settings
2-3 Outgoing/Incoming Switch Settings
2-5 Connectors P302, 5302 and J303
2-6 Interconnect Card Equipment Terminations
LIST OF TABLES (CONT'D)TABLETITLE
PAGE
4-1 Supervisor Function Access Codes 32
4-2 Maintenance Function Access Codes 35
4-3 Traffic Measurement Function Codes 36
4-4 Error Codes 37
4-5 Standard Programming Error Codes 40
4-6 Standard Programming (Confirm) Codes 43
4-7 Extended Programming Toll Programming Errors 44
4-8 Extended Programming Toll Control Confirm Codes 45
4-9 Extended Programming Speed Call Error Codes 45
4-I 0 Extended Programming Automatic Route Selection Programming Error Codes 46
4-11 Automatic Route Selection Confirm Error Code 46
4-12 Extended Programming Error Codes - SUPERSET Programming 47
4-I 3 Attendant UCD Access Codes 51
5-I Table Listing for Troubleshooting 65
5-2 Error Code Procedures 66
5-3 Extension Fault Report Procedures 68
5-4 Console Faults 69
5-5 Trunk Fault Report Procedures 70
5-6 System Faults 71

Introduction
1.01 This Section contains information to be used when troubleshooting the SX-IOO/SX-200 Automatic Call Distribution System. The Practice is divided into seven parts and nine appendices:

- Part 1. General - gives a brief outline of the Practice and a general introduction to the troubleshooting philosophy.
- Part 2. Maintenance Aids - describes the maintenance aids provided by the system and gives a description of each indicator, switch and display.
- Part 3. Console and Test Line Functions - contains a description of the maintenance functions which can be dialed from the console or the test line.
- Part 4. Error Code Troubleshooting - describes the troubleshooting procedures to be used in conjunction with the system error code displays.
- Part 5. Fault Report Troubleshooting - this Part details troubleshooting procedures to be used when no error code is reported.
- Part 6. SX-IOO/SX-200 Power Supply Specifications - defines the electrical and operational specifications for the SX1 00/SX-200 system power supplies.
- Part 7. RMATS - this Part briefly discusses RMATS. For further information, see Section MITL9105/91 10-098-101-NA.
- Appendix $A=$ MITEL Action Procedures (MAPs).
- Appendix B - provides a series of tables of all system parameters.
- Appendix C - provides installation and cabling information for the SX-IOO/SX-200 system.
- Appendix $D=$ contains the mechanical information pertaining to the SX-100 system in the form of MAPs and tables.
- Appendix E - contains the mechanical information pertaining to the SX-200 in the form of MAPs and tables.
- Appendix F = contains all power checks pertaining to the SX-IOO/SX-200 system in the form of MAPS and tables.
- Appendix G - details, in the form of MAPs, the procedures required to locate and fix malfunctions in the systems.
- Appendix H - gives a brief description of the SUPERSET 4 set, including physical characteristics and electrical and environmental specifications.
- Appendix I - gives a brief description of the SUPERSET 3 set, including physical characteristics.

Reason for Reissue
1.02 This Section has been reissued to include additional UCD (Uniform Call Distribution) information.
1.03 It should be noted that certain sections and appendices must be used as interlocking information for complete troubleshooting.

The SUPERSET 3 and SUPERSET 4 Sets
1.04 For test information on the SUPERSET 3 set or the SUPERSET 4 set, see Section MITL9 105/9 11 0-096-320-NA. For Engineering Information on the SUPERSET 4 set, see Section MITL9105/9110-096-180-NA.

Basic Troubleshooting Philosophy
1.05 The SX-IOO/SX-200 system employs automatic diagnostics which, in most cases, can pinpoint faults to a specific printed circuit card. A system malfunction is generally corrected by the replacement of an indicated faulty circuit card with a known (good) spare. Should the need arise, the actual shelf backplane or power supply may be easily replaced by a new unit. The tables, MAPs and explanations in this Practice should be sufficient in most 'cases to cover any problems which may arise in the field.
1.06 Actual field repair of components on cards, shelves or power supplies is never done. All defective units should be returned to MITEL, as per Section MITL9105/9110-096-200-NA.
2. CIRCUIT CARD AND MAINTENANCE PANEL AIDS
2.01 The SX-IOO/SX-200 system is equipped with various maintenance aids that will be of assistance to the repair person troubleshooting the system. This Part is a card-by-card description with specific reference to all indicators, switches and fuses on the cards. In addition, the connectors and switches on the maintenance panel are also described.

Card Shelf
2.02 Figure 2-I illustrates the card locations in the equipment shelf or shelves. A visual display of all cards is shown in Figures 2-2, 2-3(a) and 2-3(b). Fuses on the backplane of the shelf are described in paragraph 2.25.

Both the SX-100 and SX-200 systems employ a minimum nu ber of cards in the card shelf (Figure 2-2 and Figures 2-3(a) a (b)). These cards may be used in either system, minimizing stock and control problems for field maintenance.

IPC Card
2.04 The IPC (Integrated Processor Control) contains all operat software in the form of PROM and RAM and the microproces: (68A09). There is 160 kbytes of PROM and 48 kbytes of RAM. Of the kbytes of RAM, 34 kbytes are write-protected and the remaining kbytes are not write-protected. All customer memory is protec 1 from power failure by a card-mounted battery pack When an IPC shipped, the batteries are turned off (see Secition MITL9105/9 110-0! 350-NA). The batteries must be turned on before the IPC can programmed. The actual Generic information is contained in the PR and is non-volatile (see Figure Z-2).
2.05 There is a RAM Load button that will enable a RAM data lc from a recording device. This card also contains a LED that v be lit to indicate that the RAM batteries are charging. In addition to t RAM batteries LED, there are three other LEDs:

1. The top LED, when flashing, indicates that the automatic di nostics are running. The LED will not flash (the diagnostics not run) when the system is in Programming Mode, or wl less than four speech paths are idle. Under these circumstan the LED may be on or off; its state has no special meaning.
2. The second LED, when lit, indicates that the system is in t programmable mode.
3. The third LED, when lit, indicates that the RS-232 port is in us
4. The fourth LED if supplied, when lit, indicates that the systen functioning normally.

Scanner Card

2.06 The Scanner card (Figure 2-2) contains a 2-digit display wh is used to display faulty card positions. It may be used conjunction with the test line to display the status of selected circı and to support the customer data Load and Dump. The 2-digit dis; is read from top to bottom. If a card is malfunctioning, the display show the position number of the faulty card (01-22 for equipm shelf 1, and 31-42 for the SX-200 equipment shelf 2).
2.07 When used in conjunction with the test line, the display shi the status of the receiver and/or the speech path which been selected. The top display shows the receiver status and bottom display shows the speech path status. The customer data (be dumped or loaded in blocks. The displays used are shown in T a 2-I. This card also contains the night bells and night service relays.

SECTION MITL91 05/91 10-096-350-NA

Figure 2-I Equipment Shelf

TABLE 2-I
SCANNER DISPLAYS

Display	Meaning
A	Available - not in use
C	Conversation - in use
E	Error - found faulty by diagnostics
F	Ound - in use by test line
0	Optional - no specific circuit selected
AA	Eeginning of Data Load
$01-99$	Ech Record increments
$00-30$	Checksum Error on Data Load
EE	

2.08 The Master Reset button is used in the initial programming process as part of the RAM clearing procedure and may also be used to reset the system. When the Master Reset button is pressed, the processor is momentarily turned off, all existing calls are dropped, and all system crosspoints are released. The processor then starts, and the diagnostics begin operating, in the same manner as when the system power is first turned on.
2.09 The Baud Rate switch selects the RS-232 port baud rate as either 300 or 1200 baud. The number of stop bits, parity and word length is determined by the DIP switches on the face of this card.

Tone Control Card

2.10 This card provides dial tone, busy tone, ringback tone and miscellaneous tone, along with two DTMF generators and two rotary dial generators which are used for diagnostic tests. The DTMF generators are also used when dialing from the console. The four thumbwheel switches used with the test line and programming are also located on the tone control card. In addition, the circuits for Page 1 and Page 2 outputs, and the Music-on-Hold inputs are located on this card (see Figure 2-2).
2.11 Tone Control Thumbwheel Switches. The four thumbwheel switches on the Tone Control card are used in conjunction with programming, maintenance and load functions. The number settings read from top to bottom. Programming functions are shown in Table 2-2.
(a) Maintenance Functions: The thumbwheel switches may be used in conjunction with the test line to select receivers and speech paths. The top two switches are used to select a receiver by setting the switches to the last digits of the required receiver equipment number (even numbers only, $90-20$). If set to 99 , any free receiver will be selected. The bottom two switches are used to select a speech path (01-31 for speech paths, or 32 for the Music-on-Hold speech path). If set to 99 , any free speech path will be selected. When not using the test

SECTION MITL9105/911 0-096-350-NA

Figure 2-2 Equipment Cards

TWO VERSIONS OF CO TRUNK CIRCUIT CARD 91 10-011-000 DO EXIST

TWO VERSIONS OF E\&M TRUNK CIRCUIT 9710-013-000 DO EXIST

THIS IS A MODULAR E\&M TRUNK CARD.
TWO E\&M TRUNK CIRCUITS ARE ACCOMMOOATED.
THE TRUNKS MAY BE SET FOR WINK START.
STOP DIAL. 2- OR 4-WIRE OPERATION. SPECIAL
GAIN AND 600 OHMS OR 900 OHMS IMPEDANCE.

Figure 2-3(a) Circuit Cards

THE 9110-211-000 IS A TRANSFORMER TRUNK CARD ACCOMMODATING FOUR CO TRUNKS.

9110-031-000

THIS IS A MODULAR DID/TIE TRUNK CARD. tWO DID OR TIE TRUNKS ARE ACCOMMODATED. TRUNKS CAN BE SEI FOR WINK START, INCOMING dIAL = OUTGOING AUTO AND DELAY DIAL.

Figure 2-3(b) Circuit Cards
line for maintenance purposes, the switches should be set-to 8888.
(b) Load Functions: The Customer Program Dump/Load Function requires the switches to be set to 5523 to initiate a load from an external storage device.

TABLE 2-2
SWITCH SETTINGS

Switch Settings	Function
7770	Enter Maintenance Console into programming mode Enter Supervisor Console 1 into programming mode Enter Supervisor Console 2 into programming mode Initialize System Configuration (Clear RAM) Take any console out of programming mode (one of the X = any digit except 7 n = O-9) Enables reset from test line (n = O-2); Dial 555-6 Load Function
7771	XXXn
7776	Control Card (Basic)

2.12 The console control card provides the interface between the system and two consoles. Console control card number -1 (position 17) is allocated to the maintenance console connector and the Supervisor console number 1 connector. Console control card number 2 (position 16) is allocated to the Supervisor console number 2 connector. The card provides both voice and data signals to and from each console (see Figure 2-2). To identify the console, the operator may press the IDENT button. The last segment in the DESTINATION Display identifies the console as 0 for maintenance, 1 for console 1 , or 2 for console 2.

Console Control Line and Data LEDs

2.13 LINE 1 and LINE 2 LEDs, when lit, indicate that the associated console is active (i.e., the handset or headset is plugged in). The designations 1 and 2 refer to the two consoles handled by the card. The maintenance console will appear in slot 17, line 2 . Console 1 will appear in slot 17, line 1. Console 2 will appear in slot 16, line 1. Line. 2 in slot 16 is not used. The data LEDs indicate voice pair continuity to the console(s). The LEDs labeled DATA 1 and DATA 2 flicker whenever data is transmitted from the corresponding console to the console control card (data is transmitted when any console button is pressed).

Remote Control RMAT

2.14 The Remote Control System (RCP) card, can be fitted in slot 16 of the System shelf to provide the System console button functions remotely, under the control of the RMAT Controller (see Section MITL9105/9110-98-101-NA). The main components of the RCP card are as follows:

- The Micro-Processor Unit (MPU), which acts on commands received from the RMAT Controller via the modem.
- MEMORY PROM/RAM, which contains programmed memory and scratch pad memory for storage and execution of commands.
- MODEM, which provides the necessary tone transmitter and receiver, and contains the handshaking circuitry required to interface the MPU with the external 2-wire line.
- TRUNK INTERFACE, to provide the proper termination to the line with regard to impedance, ringing and supervisory condition.
- MASTER/SLAVE INTERFACE, to enable the MPU to access the System data bus and control lines.

Receiver Card

2.15 The dual-receiver card has two rotary dial and two DTMF receivers. Having received each dialed digit, the receiver informs the processor and prepares for the next digit. The dual-receiver card contains no LEDs or switches. The quad-receiver card contains four rotary dial, four DTMF receivers, four dial tone detectors, and four sets (two each) of LEDs labeled AI B1, A2 B2, A3 B3 and A4 B4. In each case, the A LED indicates a busy condition and the B LED indicates a busied-out condition.

Trunk Card

2.16 The Trunk card contains either two or four trunks depending

 upon the trunk type (Figure 2-3 - four CO Trunks, two E\&M Tie Trunks, or two DID Trunks per card). These circuits provide the interface between the system and the Central Office, other systems, or other equipment. Each trunk circuit repeats dial pulse signals from the speech path to the Tip and Ring and passes DTMF signals directly from the speech path to the trunk for outgoing calls. The busy switches on the trunk card may be used to make a trunk continuously busy. If the trunk is in use when the switch is set, the existing call is not disturbed. For exact details of the trunk busy switches, see Table 2-3.(a) Trunk Busy/Idle LEDs: Each trunk circuit has associated with it a LED which shows the busy/idle status of the trunk as follows:

- Trunk circuit idle - LED OFF
- Trunk circuit seized - LED ON
 or from the console).
(b) Trunk Incoming and Outgoing Busy Switches: Associat with each trunk circuit are two busy switches: one for maki the trunk busy outgoing and one for making the trunk bl incoming. Table 2-3 lists the switch settings and describes th effect.

Standard Line Card

2.17 The Line card contains eight separate line circuits. The I circuit detects on- and off-hook conditions, which are rect nized by the scanner and reported to the processor for appropria action. Dial signals (rotary dial or DTMF) are passed over the spec path selected for the conversation (see Figure 2-2). The LED on es line circuit provides an indication that the line circuit has detected off-hook condition. The LED is driven directly from the off-hook del circuit in the line circuit. It turns ON when an off-hook condition detected and will flash when dial pulses are sent.

The SUPERSET Line Card

2.18 The SUPERSET 3 set or the SUPERSET 4 set requires a SUPI SET Line card that is not compatible with standard telepho sets. The card contains eight separate line circuits with eight LI indicating on-/off-hook conditions. The line circuits act as interfa between the SUPERSET sets and the system CPU (Central Proces Unit). The system processor continually polls all line circuits to del mine calls for service, time updates, messaging, etc. No actual c signals are sent between the SUPERSET 3 set or the SUPERSET 4 : and the system, as all communication is digitally sent. For furt information, see Section MITL91 05/91 10-096-I 80-NA.

RAD

2.19 The Recorded Announcement Card (RAC) occupies one peri aral slot in the system and provides two different 8 sec recordings using digital solid-state storage. Messages are recorded the Supervisor's console. If required, the two 8 second messages I be linked to provide one 16 second message. In the front faceplate the card there are eight DIP switches. The first four switches may used to busy out a particular channel (two channels per recordir The fifth and seventh switches are the write-protect switches. The switches may be set to disable recording. In addition there are 1 indicator LED (one per channel) that are lit when a channel is busies out or in use.

Maintenance Panel

2.20 At the top of the equipment cabinet -is the maintenance pe (Figure 2-4). This panel provides the service personnel v access to the system through the maintenance console connector ; test line terminals. Also housed on the maintenance panel are the

Figure 2-4 Maintenance Panel
Power Fail Transfer Control Switches, a System Power ON/OFF switch and a Power ON LED.
(a) Maintenance Console Connector: This connector is provided to allow the installer/repair person to plug in a console for administration and test purposes: i.e., to program changes in system data.
(b) Power Fail Transfer Control Switches: These switches are used to control the source of a power fail transfer. A Power Fail Transfer (PFT) may be caused: by a common control failure, by a power failure, by the operation of a failure transfer switch on one of the consoles, or by operating the Master Transfer Switch on the maintenance panel. The switches have two positions: ENABLE and DISABLE. When set to ENABLE, the system allows power fail transfer to be initiated from the designated source. When set to DISABLE, the designated source cannot initiate power fail transfer; e.g., with the COMMON CONTROL power fail transfer control switch set to ENABLE, a common control failure will cause a power fail transfer. The MASTER power fail transfer switch will set the system to power fail transfer when operated to the TRANSFER position. The switches associated with each console must be set to disable when that console is not in use. If the transfer switch on a console will never be used, the transfer enable switch may be left in the disable position at all times.
(c) Test Line Terminals: The test line TIP and RING terminals may be used in conjunction with a test set (butt-in) and the thumbwheel switches on the tone control card, to access individual speech paths, receivers, trunks, and lines for test purposes. The test line also has the capability of resetting system errors, initializing card slots, busying out and debusying receivers and speech paths and controlling the printer port. See Part 3 for a full description of the use of the Test Line.
(d) The System Power: This switch has the ability to turn the shelf power on or off. Note that this does. not turn the power supply off, but the system will go into a Power Fail Transfer. The system power should be disconnected from the commercial AC source (or DC if -48 Vdc fed) before any power supply maintenance is attempted.

TABLE 2-3

OUTGOING/INCOMING SWITCH SETTINGS

Trunk Busy Switches:

1. Outgoing busy switches (one per trunk) can be set for either of the following conditions:

Idle Setting - Normal trunk operation.
Busy Setting - Trunk cannot be seized for outgoing call.
If the switches are not set in this manner, "Ring - Don't Answer", may occur.
2. The "Outgoing .Busy" condition may be set either by the outgoing busy switch, or by the console 'Trunk Busy-Out" function. When this condition is in effect, the incoming busy switch affects the trunk condition as follows:

Idle Setting - No answer will be given to incoming CO calls.
Busy Setting - A permanent seizure condition is given towards the CO when the trunk is seized for the first line.

For further information, see Sections MITL9105/911 0-096-200-NA and MITL9105/9110-096-210-NA.

Cards External to the Shelf

2.21 There are a number of cards that are external to the equipment shelf (shelves). These cards, and the system they are part of, are listed in Table 2-4.

The SX-200 Interconnect Card
2.22 The SX-200 Interconnect Card (Figure 2-5) provides a direct connection between the consoles (J13, J14 and J15) and the shelf backplane (P16 and P17). This board also contains the console fuse for protection of the console. Directly opposite the fuse is the RS-232 printer port J 302 . For a complete description of this port, see Section MITL9105/91 10-096-450-NA and Table 2-5. Plugs P301 and P303 are the maintenance panel connector and the power supply out-of-tolerance monitor, respectively. All power for the Interconnect card is supplied through the power supply terminal block TB301 on the board. Plugs J13, J14 and J15 are the console plugs. Plugs P16 and P17 provide interconnection between the Interconnect card and the shelf backplane. Plugs P18 and P19 provide a connection between the Interconnect card and the Cross-Connect Field. P18 carries Night Bell Contacts, Music on Hold, Tip and Ring for RMATS and Paging access circuitry. P19 carries Tips and Rings for the card shelf slots 13 and 14.

TABLE 2-4
EXTERNAL SYSTEM CARDS

Card	sx-200	Figure	sx-100	Figure
Interconnect	1 card	$2-5$	1 card	$2-8$
Power Fail Transfer	1 card	$2-6$	combined	
Console Interface	1 card (or 2,	$2-7$		
	sx-200)			

TABLE 2-5
CONNECTORS P302, 5302 and J303

Thus the Interconnect card does as its name implies, by providing interconnection between the system and external equipment, as sho in Appendix C. Each component that terminates on the Interconni card is listed in Table 2-6.

The SX-200 Power Fail Transfer Card

2.23 The SX-200 Power Fail Transfer Card (Figure 2-6) provides

 the possibility of 12 CO trunks to be connected to 12 ext sions in the event of a commercial power or equipment failure. T^{-} amphenol connectors (P20 and P21, Table 2-6) are hardwired dires to the cross-connect field (Appendix C) to provide for power transfer. All power for this card is provided through the cable harne to the power terminal block (TB1) at the top of the card. The power f transfer LED on this card, when not lit, indicates that the system is in power fail transfer condition.The Console interface Card
2.24 The Console Interface Card (Figure 2-7) provides static prot tion for the SX-200 system against discharges to the cons and console cable. This protection is achieved by placing a series transient voltage suppressors between the console connections -and chassis ground. Any transient voltages will be routed to the ground.

2.25 The SX-100 system combines the Console Interface, Power I

Transfer, and Console Interconnect on one card (Figure 2-8).
plugs on this card perform the same functions as listed in Table 2 All power for the board is provided by the two terminal blocks (TB3 and TB302) fed by a cable from the power supply. In the event of commercial power or equipment failure, up to six CO trunks can automatically connected to six extensions. In addition, the board ha Transfer LED which will go out when a transfer occurs. There are thr fuses for user ringing, user -48 Vdc, and -48 Vdc for the console (F2 and F3).

Shelf Backplane
2.26 The same backplane and equipment shelf are used in both t SX-100 and SX-200 systems, Field replacement of only backplane is not recommended; rather the whole equipment st should be replaced (Figure 2-10). The backplane essentially provis an interface between all printed circuit cards (paragraphs 2.01-2. and extensions, trunks and miscellaneous equipment. Physically 1 backplane has six 25 -pair amphenol type connectors for equipme extensions and trunks. All power for the backplane is provided terminal blocks TB1/2 and TB3/4. All PCB cards are held in position PCB edge connectors on the backplane, and plastic guides on the sh In both the SX-IOO/SX-200 systems, the backplane power is fed by cable from the output of the power supply.

TABLE 2-6

INTERCONNECT TERMINATIONS	
Component	Interconnect Card Consoles Slug Number
Prelf Backplane	J13, J14, J15
Mainter/Recording Device	P16, P17
Power Out-of-Tolerance	J302
Cross-Connect	P301
Power Fail Transfer	P302
Power Terminal	P18, P19

Figure 2-6 SX-200 Interconnect Card

NOTE: FOR CABLE INFORMATION SEE APPENDIX C

Figure 2-6 SX-200 Power Fail Transfer Card

Figure 2-7 SX-200 Console Interface Card

NOTE: FOR CABLE INFORMATION SEE APPENDIX C.

Figure 2-8 SX-100 Interconnect, Console Interface, rower rall I ranster Cara

Figure 2-9 Backplane

3. CONSOLE AND TEST LINE MAINTENANCE FUNCTIONS

3.01 The console and test line are of great importance when detec ing and locating a fault. Each may be used individually or th may be used together in troubleshooting the system. This Part w discuss first the Console Alarm LEDs and Maintenance Aids, and th the Test Line Functions. The Console Alarm LEDs and Maintenan Aids will include all ERROR, Supervisor access and Maintenance Fun tion access codes in the form of tables. The Test Line Function d scription will include an explanation of all features available to the te: line.

Console Maintenance Functions

3.02 Each Attendant Console (Figure 3-I) is equipped with a numk of maintenance aids and keys which are associated with mai tenance functions. The following paragraphs describe the function (each maintenance-associated LED and key:
(a) Minor (MIN) Alarm LED: This LED will flash whenever t automatic diagnostics detect a malfunction which is not suf ciently serious to cause a complete system failure. Typic examples would include receiver malfunction, speech path ma function or crosspoint malfunction.

Figure 2-10 Equipment Shelf

Figure 3-1 Attendant Console
(b) Console (CON) Alarm LED: The Console Alarm LED flashes to indicate a console malfunction. The LED will go off when the alarm has been cleared or canceled.
(c) Major (MAJ) Alarm LED: The LED turns ON to indicate that a malfunction has occurred which has caused the power fail transfer relays to operate:

- When the MAJ Alarm LED is ON, the system is automatically in Power Fail Transfer mode.
- Typical examples of major alarms include Scanner failure or CPU malfunction, Power Supply voltages out-of-tolerance.
- The MAJ Alarm LED, unlike the other console LEDs, is hardwired from the system cabinet to the console.
- A colon in the time display indicates that the console is receiving power and the handset is plugged in.
- A time display indicates that the system and console processors are running. It also indicates that the link from the console control card to the console is correct. (Note: If cable is not in correctly, time will flash or will be incomplete.)

ALARM RESET Button

3.03 This button is used to reset the flashing MIN Alarm LED and the audible signal associated with the alarm indication. When the button is pressed it:

- Resets the flashing LED to steady and extinguish the audible alarm signal associated with the alarm condition.
- Displays in the SOURCE and DESTINATION fields, details of the alarm condition, including the location of the printed circuit card that has malfunctioned.
3.04 A typical alarm readout in the SOURCE display is shown in Figure 3-2. In addition, if the ALARM RESET button is pressed, the Busy Lamp Field changes to display lines and trunks which are locked out or have been busied-out This display remains for as long as the ALARM RESET button is held down.

IDENT Button
3.05 If the IDENT button is pressed when the console is idle, the SOURCE display will show the installed firmware generic number, and its revision. The DESTINATION display shows an internal firmware code and the number of the console at which the key was pressed (see Figure 3-3). If the IDENT button is pressed when the Supervisor is connected to either a source or destination party, the SOURCE and DESTINATION displays will change to show the equip-
ment numbers and speech path number being used. The date 1 appear in the time display.

Error Codes

3.06 Table 4-4 is a list of error codes displayed on the consc indicating the card causing the malfunction and the type malfunction. Figure 3-2 shows a typical error display and its int pretation.

Power Fail Transfer Switch

3.07 This switch (on the underside of the console), when in TRANSFER position, manually switches the system into po fail transfer (unless the appropriate power fail transfer enable swi on the maintenance panel is in the DISABLE postion). Operation of switch from the NORMAL to the TRANSFER position will cause existing calls on the transferred trunks to be released, and the MAJ alarm LED will light. The switch should only be operated in emerge situations. For normal operation, the switch should be in the NORA position.

Test Line Functions

3.08 The test line is on equipment number 001, and appears both connector P1 and on terminal posts on the maintenance pa It must be programmed to be an extension, and should have full tri access for use by maintenance personnel.
3.09 As well as its normal facilities as an extension, certain ac tional features exist exclusively for the test line. These are
ability to: directly access a trunk: set and clear the busy-out c1 ditions of speech paths and receivers; clear all errors and busyconditions in the system (except for trunks); and select a spec

E012 - UNABLE TO CONNECT A SPEECH PATH TO LINE CARD IN 04 - CARD POSITION 04 SHELF 1
031 - EQUIPMENT NUMBER 31 (SHELF 1CARD 04, UNIT 7) 024 - SPEECH PATH TO USE 024

Figure 3-2 Typical Readout

figure 3-3 Typical Identification Display
speech path and receiver for use and display their status on the Scanner card.
3.10 Most of these features require a special access code (the Maintenance Function code), which will normally be " 555^{*}, but may be different if necessary to avoid number plan conflicts. This document assumes the use of the code 555.

Note: The rotary switches on the tone control card (slot 18) should be set to 8888 when the test line is not being used for maintenance purposes.

Direct Trunk Access
3.11 The test line (or console) dials $555+2+n n n$ where " $n n n$ " is the 3-digit equipment number of the trunk, including leading zeros. Reorder tone indicates that the equipment number is not that of a trunk Busy tone indicates that the trunk is busy; otherwise the line is connected to the trunk If the trunk is a member of a group programmed 'Wait for Dial Tone", the connection is not made until dial tone is received.

To Busy and Clear Busy-Out Receivers and Speech Paths

3.12 The test line (or console) dials:
$555+33+n n$ (where $n n=$ the 2-digit speech path) to busy out the speech path

OR
$555+43+n n$ (where $n n=$ the 2-digit speech path) to clear a busied-out speech path

OR
$555+3$ + nnn (where nnn = the 3-digit receiver equipment number) to busy out a receiver

OR
$555+4+n n n$ (where nnn = the 3 -digit receiver equipment number) to clear a busied-out receiver.

Reorder tone indicates that the number is invalid and dial tone indicates that the operation is completed.

Clear All Errors

3.13 The test line (or console) dials $555+1$. Dial tone is returned. All outstanding minor alarms are cleared. All busied-out receivers, generators and speech paths are set back to normal and the diagnostic tests are restarted.

Select a Speech Path and/or a Receiver

3.14 This procedure is used to select a speech path and/or a receiver when the test line goes off-hook
3.15 The top two switches on the tone card select the receiver to be used, set up as the last two digits of the receiver equipment number (even numbers, $90-20$). If set to 99 , any free receiver is used (Figure 3-4).
3.16 The bottom two switches select the speech path to be used, set up as the speech path number (01-31), or the Music-on-Hold speech path may be selected as 32 (in which case no receiver will be connected). If set to 99 , any free speech path is used. When the switches are set and the test line goes off-hook, the system waits for the selected speech path to become free and seizes it. It then waits for the selected receiver to become free: A busied-out speech path- or receiver may be selected; the speech path may be accessed, but the receiver will not respond to dialing. If an illegal number is set up, no device will be selected.
3.17 The two 7-segment displays on the- Scanner card show the status of the receiver and/or speech path when a specific one has been selected. The top display is for the receiver and the bottom display is for the speech path. The readouts are:

- A - Available - not in use
- C-Conversation - in use
- $E=$ Error - found faulty by diagnostics
- \quad = Found - in use by test line
- 0 - Optional - no specific circuit selected.
3.18 Once the test line has obtained a speech path and a receiver, it does not change its selection until it originates a new call (changing the switch settings meanwhile will cause the display to change to reflect the status of the receiver, and speech path whose numbers are on the switches). If a valid speech path is selected, but an invalid receiver is selected (e.g., 91), then the line is connected to the speech path, no receiver is selected, and no dial tone is introduced. This provides the ability to listen to a speech path for the presence of noise. The test line, since it has not been assigned a receiver, will not time-out and revert to reorder tone. It is then possible to listen to any unused speech path by remaining off-hook and selecting the speech path number with the bottom two switches.

Slot Initialization Activate

3.19 Occasionally, when circuit cards are plugged into the system, the logic circuits on the card may not reset completely. In order to guarantee complete reset of all card logic, a slot initialization procedure has been provided. This procedure allows the service personnel, after inserting a card into a shelf, to initialize the card slot from the test line. To initialize the card slot, dial $555+5+\mathrm{nn}$, where nn is the card slot number ($1-17$ shelf $1,31-42$ shelf 2). Since inserting a card may cause diagnostic errors, this procedure is normally followed by dialing $555+1$ to clear all system errors.

Hardware Position Number				DuaiReceiver	QuadReceiver
089	097	105	113		
090	098	106	114	----	----
091	099	107	115		
092	100	108	116	----	----
093	101	109	117		
094	102	110	118		----
095	103	111	119		
096	104	112	120		-m-
12	13	14	15	Card	osition
Note: The ---- indicates the applicable equipment number.					

Figure 3-4 Receiver Equipment Numbers

Forced Trunk Release

3.20 This feature allows service personnel to force a busy trunk in the idle state. The test line (or console) may dial $* 20+n n n+$ \#, where nnn is the individual trunk equipment number and press 1 RELEASE button to force release a trunk. Care should be taken wh force-releasing a trunk, as the trunk will be forced into the idle sta even if the trunk is legitimately in use.

4. CONSOLE FUNCTIONS AND ERROR CODES

4.01 Systems may be assigned a system identifier (one to thi digits) which will be unique to that system. To display 1 system ID, dial *17; the system ID appears in the SOURCE displa Press RELEASE button to clear the display. To change or enter t system ID, dial $* 17$, enter the $\mathrm{I}-3$ digit system ID, press the RELEA: button and the display will clear (System Option 168 must be enabled

Current Speech Path Display

4.02 This procedure is used to display the speech path numk being used by a source or destination party. If the console h a destination party, pressing the console IDENT button causes \mathbf{t} number of the speech path in use to be displayed in positions 7 an of the DESTINATION display. Similarly, if the console -*has a sour party, pressing the IDENT button causes the speech path number to displayed in positions 7 and 8 of the SOURCE display.

Line and Trunk Status Display
4.03 This function allows the Supervisor to display certain inforr tion regarding the status of selected lines or trunks. This \mathbf{i} ture enables MITEL Field Engineers to diagnose malfunctions from remote location. To display the line or trunk status, dial $\# \# n n n \#$, wh nnn is the equipment number of the line or trunk Care should be tak when recording the status display. The record must include any blan dashes, or symbols exactly as shown in the SOURCE and DESTINATI displays.
4.04 Tables 4-I and 4-2 are a listing of all system access codi Table 4-3 is the Traffic Measurement Function Codes. For further description, see Sections MITL9105/91 10-096-315-NA a MITLS 105/9 11 0-096-450-NA.
4.05 Table 4-4 is a list of error codes that may appear on console during operation of the system. Table 4-5 is a list programming error codes that may occur during standard progr: ming of the system. Table 4-6 is a list of standard programmi confirm codes. Table 4-7 is a list of Toll Control programming er codes that may occur during extended programming of the syst Table 4-8 lists all Toll Control Confirm codes. Table 4-9 lists all Spe Call error codes. Table 4-10 lists all Automatic Route Selection (AI error codes and Table 4-11 lists all ARS Confirm codes. Table 4 lists all the SUPERSET set programming error codes. Figure 4-I ill
trates the console overlays available for system programming. Table (4-13 lists all Attendant UCD Access Codes.

Figure 4-1 Programming Overlays

Figure 4-I Programming Overlays (Cont'd)

Figure 4-I Programming Overlays (Cont'd)

TABLE 4-I
SUPERVISOR FUNCTION ACCESS CODES
These codes assume the use of $*$ as the Supervisor Function code (Feature Number 18). For Supervisor Function codes used in Traffic Measurement, see Section MITL9105/9110-096-450-NA.

To cancel all call forwarding:
(a) Dial $* 1$, or $* 11$.
(b) Dial \#.
(c) Press RELEASE button.

To access an individual trunk:
(a) Dial $* 20$.
(b) Dial individual trunk access number (equipment number).
(c) Dial $*$.
(d) Press RELEASE button.

To force-release an individual trunk:
(a) Dial $* 20$.
(b) Dial individual trunk access number (equipment number).
(c) Dial \#\#.
(d) Press RELEASE button.

To make flexible night service assignments (Note 3):
(a) Dial $* 3$.
(b) Dial individual trunk access number (equipment number).
(c) Press NIGHT 1 or NIGHT 2.
(d) Dial extension number.
(e) Press RELEASE button.

To cancel all system callbacks:
(a) Dial *4.
(b) Dial \#.
(c) Press RELEASE button.

To set the clock time:
(a) Dial * 5 .
(b) Dial time (2-digit hour plus 2-digit minutes).
(c) Dial * for PM; otherwise AM.
(d) Press RELEASE button.

To make trunk group Supervisor access only:
(a) Dial $* 6$.
(b) Dial trunk group (1 through 10).
(c) Dial *.
(d) Press RELEASE button.

To make trunk group extension and Supervisor access:
(a) Dial $* 6$.
(b) Dial trunk group (1 through 10).
(c) Dial \#.
(d) Press ReLEASE button.

To change the Direct Inward System Access Code:
(a) Dial $* 7$.
(b) Dial DISA code.
(c) Press RELEASE button.

To cancel a minor alarm (Note 1):
(a) Dial $* 8$.
(b) Dial \#.
(c) Press RELEASE button.

To busy out an individual trunk (Note 3):
(a) Dial $* 9$.
(b) Dial individual access number (equipment number).
(c) Dial *
(d) Press RELEASE button.

To debusy an, individual trunk (Note 3):
(a) Dial $* 9$.
(b) Dial individual trunk access number (equipment number).
(c) Dial \#.
(d) Press RELEASE button.

To change the status of all occupied clean rooms to occupied and needs cleaning:
(a) Dial $* 10$.
(b) Dial *
(c) Press RELEASE button.

To change the status of all occupied rooms in the need of cleaning to occupied clean:
(a) Dial $* 10$.
(b) Dial \#.
(c) Press ReLEASE button.

TABLE 4-1 (CONT'D)
SUPERVISOR FUNCTION ACCESS CODES

To set up call forwarding:
(a) Dial $* 1$ Innn, where $n n n$ is the extension number of the forwarding extension.
(b) Dial call forwarding code (l-4).
(c) Dial mmm , where mmm is the number to which the calls are to be forwarded.
(d) Press RELEASE button.

To cancel call forwarding for an extension:
(a) Dial * 11 nnn , where $n n n$ is the extension number of the forwarding extension.
(b) Dial \#.
(c) Press RELEASE button.

To display call forwarding set for an extension:
(a) Dial $*_{1}$ Innn, where $n n n$ is the extension number of the forwarding extension.
(b) Press RELEASE button.

To cancel all call forwarding:
(a) Dial *1\# or *11\#.
(b) Press RELEASE button.

To busy out an extension (Note 3):
(a) Dial $* 12 n n n$, where $n n n$ is the number of the extension to be busied-out.
(b) Dial $*$.
(c) Press RELEASE button.

To debusy an extension (Note 3):
(a) Dial $* 12 n n n$, where $n n n$ is the number of the extension to be debusied.
(b) Dial \#.
(c) Press RELEASE button.

To suspend the printer (Note 3):
(a) Dial $* 14 *$.
b) Press RELEASE button.

To purge and ignore the printer (Note 3):
(a) Dial $* 1400$.
(b) Press RELEASE button.

To enable the printer (Note 3):
(a) Dial *14\#.
(b) Press RELEASE button.

To change the date:
(a) Dial $* 15$ and 3 - or 4 -digit date (1- or 2-digit month, 2-digit day., 2-digit year)
(b) Press RELEASE button.

To print the room register audit (Notes 2 and 3):
(a) Dial $* 16$.
(b) Press RELEASE button.

To change the system identity (Note 3):
(a) Dial $* 17 \mathrm{nnn}$ (1- to 3 -digit ID, o-999).
(b) Press RELEASE button.

To display current system identity:
(a) Dial $* 17$.
(b) Press RELEASE button.

To print the 'room status" audit (Note 2):
(a) Dial $* 18$.
(b) Press RELEASE button.

To print stored customer data (Note 4):
(a) Dial $* 19+n$, where n is:

0 A complete print (Note 5)
1 System Options, Feature Access Codes, Classes of Service, Hunt Groups and Extensions
2 Trunk and Trunk Group Data
3 Special Set Data
4 Toll Control Data
5 Speed Call Data
6 Automatic Route Selection Data

* Systemwide Data (Note 6).
(b) Press RELEASE button.

Notes to Table 4-1:

1. The errors will be sequentially stacked in the memory and may be recalled sequentially (most recent first) by repeating the above procedure.
2. Printer starts after RELEASE button is pressed.
3. Requires System Options Programming.
4. The customer must have programming access to the features in order to request a printout.
5. This prints all sections provided the customer has programming access to the features.
6. This will print only the systemwide speed call tables and the system special set messages.

TABLE 4-2
MAINTENANCE FUNCTION ACCESS CODES

To select any of the functions, the access code assigned for the maintenance function must t dialed (Feature Number 19). The code 555 is used in the following part for the maintenance code This may be dialed from the test line or console.

To clear all errors:
(a) Dial $555+1$.

Direct trunk or station access:
(a) Dial $555+2$.
(b) Dial individual equipment number (3-digit equipment number for trunk or station).

To busy out a receiver:
(a) Dial $555+3$.
(b) Dial equipment number of receiver.

To busy out a speech path:
(a) Dial $555+33$.
(b) Dial speech path number (01-31).

To debusy a receiver:
(a) Dial $555+4$.
(b) Dial equipment number of receiver.

To debusy a speech path:
(a) Dial $555+43$.
(b) Dial speech path number (01-31).

To initialize card slot:
(a) Dial $555+5$.
(b) Dial card slot number (01-17, 31-42).

System reset (Notes 2 and 3):
(a) Dial $555+6$.

To initiate system dump (from test line):
(a) Dial $555+71 *$ and hang up.
(b) Go off-hook.
(c) Dial $555+8+\#$ (or 2).

To initiate system dump (from console) (Note 6):
(a) Dial $555+71 *-$ dial tone returned.
(b) Dial *14\#.
(c) Press RELEASE button.

To suspend printer (Note 3):
(a) Dial $555+8+*$ (or 1), or
(b) Dial $* 14 *$ console only.

To enable printer (Note 3):
(a) Dial $555+8+*$ (or 2), test line.
(b) Dial *14\# console only.
(c) Press RELEASE button.

To purge and ignore printer (Note 3):
(a) Dial $555+8+00$, test line.
(b) Dial $* 1400$ console only..
(c) Press RELEASE button.

To print stored Customer Data:
(a) Dial $555+9+n$, where n is:

0 A complete print (Note 4)
1 System Options, Feature Access Codes, Classes of Service, Hunt Groups and Extensions
2 Trunk and Trunk Group Data
3 Special Set Data
4 Toll Control Data
5 Speed Call Data.
6 Automatic Route Selection Data

* Systemwide Data (Note 5).
(b) Press RELEASE button.

Notes: 1. For Traffic Measurement Access Codes, see Section MITL9 1 05/9100-096-450-NA.
2. The thumbwheel switches on the Tone card must be set to 777 X , where $\mathrm{X}=$ conso number (i.e., 0, 1 or 2).
3. If System Option 166 is enabled, system reset occurs, regardless of thumbwheel switch settings.
4. This prints all sections.
5. This will print only the systemwide speed call tables and the system special set messages.
6. To dump customer data blocks 1, 3, 4, 5, 6, 7 or 8, see Part H., Section MITL9105/9110-096-500-NA.

TABLE 4-3
TRAFFIC MEASUREMENT FUNCTION CODES

TABLE 4-4
ERROR CODES

Code	Major/ Minor	Slot	Reason	First three digits of Destination Display	Last three digits of Destination Display	See Note
EOO 1	major $\dagger /$ minor	20	Error in RAM	Hi byte of address	bits found in error	7.
E 002	major $\dagger /$ minor	20	PROM checksum error	000 to 020 PROM Page number		7.
E003	major	19	Clock/scanner	$\begin{aligned} & 1=1 \text { st interrupt } \\ & \text { missing, } 2=2 n d \\ & \text { interrupt missing } \end{aligned}$		
E004	minor	18	Speech path check circuit not "hi" when disconnected			1.
E005 m	minor	18	Bias circuit not connected to Speech path	Speech path number		2.
E006	minor	99 (slot not known)	Speech path short	Speech path that has bias applied	other Speech path number on which bias was seen	2.
E007	minor	18	Dial tone circuit not connected to speech path	Speech path number		2.
E008	minor	Receiver Card	Receiver not receiving tone digits	Receiver equipment number		3.
E009	minor	Receiver Card	Receiver not receiving pulse digits	Receiver equipment number		3.
E010	minor	18	Generator error	Generator number (1 and 2 are tone, 3 and 4 are pulse)		4.

\dagger During Power-Up sequence only.

TABLE 4-4 (CONT'D) ERROR CODES						
Code	Major/ Minor	Slot	Reason	First three digits of Destination Display	Last three digits of Destination Display	See Note
E011	minor	Receiver Card	Generator/ Receiver Error isolated to a speech path NOTE - Error could be on receiver card or on tone control card (slot 18)	Speech path number		
E012	minor	Line Card or Trunk Card	Unable to connect the speech path to the line programmed as a "station" or "trunk"	Equipment number	Speech path number	5.
E013	minor	18	supervisory tone missing			6.
E014	minor	Receiver Card	Receiver dialtone detector not working	Receiver equipment number		3.
E015	minor	Receiver Card	Probable receiver error			
E018	minor	99 (slot not known)	Speech path shorted out (not known)	Speech path number		2.
E019	minor	18	16 speech paths have been found in error, probably a fault in the checking circuit			
E020	minor	$\begin{gathered} 16 \text { or } \\ 17 \end{gathered}$	Excessive errors in console data circuits	Console number 0 - maintenance console 1 and 2 Supervisor consoles		
E021	minor	20	Checksum error in RAM			8.

Code	Major Minor	Slot	Reason	First three digits of Destination Display	Last three digits of Destination Display	See Note
E023	major	20	Battery Backup problem	001 = battery switch open $002=$ voltage out-oftolerance		
E030	minor	Slot number	Trunk Failure	$001=\text { no }$ seize acknowledge $002=$ no release acknowledge		
E088	minor	--	Automatic Wake-up not answered	Extension		
E096	minor	Slot number	SUPERSET Set disconnected	SUPERSET Set number		
E098	minor	-	Printer Port disabled			
E099	ninor	--	Extension locked out	Extension number		

Notes: 1. No more tests using the check circuit will be performed.
2. The speech path shown in the first two digits of DESTINATION display is busied-ol a maximum of 16 speech paths may be busied-out.
3. The receiver is busied-out; maximum one receiver on a Dual-Receiver card and $t w$ receivers on a Quad-Receiver card.
4. The generator is busied-out; maximum one. No further generator tests are performed.
5. No further tests on this slot are performed at this time. This error will occur if a card is not installed for the programmed line or trunk
6. No further test for supervisory tone presence are performed.
7. No further tests are performed.
8. E021 will reappear if the system is reset. If E021 is not cleared by initializing the RAM and reprogramming the system, replace the IPC card.

TABLE 4-5
STANDARD PROGRAMMING ERROR CODES

Error Code	Cause	Key Affected	Key Flashing	Meaning	Action Required
E 0	Invalid key pressed.	ALL	None	The last key pressed is invalid at this time.	Check procedure and press correct key.
EI	Invalid number.	ALL	None	The number entered is out-of-range or contains corrupted data.	Press key associated with entry and re-entry number.
E2	Key other than ENTER or CANCEL pressed.	LAMP TEST, COS OPTION, FEATURE, EXTN NUMBER, TRUNK HUNT GROUP, TRUNK GROUP, NEXT, EQPT NUMBER	ENTER, CANCEL	An attempt was made to leave the current mode, after some parameters were changed. but before ENTER or CANCEL was pressed. ENTER may be used to write the new programming information back to the non-volatile RAM, or use CANCEL to ignore all programming changes made, since the last time ENTER was pressed.	Press ENTER to transfer the data to permanent or CANCEL to remove the data from the temporary store.
E3	Access code has not been entered.	HUNT GROUP, TRUNKGROUP	ACCESS CODE	Attempting to enter members into a hunt or trunk group before an access code has been assigned to the group.	Press ACCESS CODE key and enter required access code.
E4	The extension number or access code entered is already assigned.	EXTN, ACCESS CODE	None	The extension number of access code entered is already assigned to an extension, feature, hunt group or trunk group. In Trunk mode, an attempt is made to delete a member of a trunk group. Equipment Numbers desired must be entered. In Trunk Group mode, an attempt is made to place a trunk into a trunk group while that trunk is currently programmed into another trunk group. Callback and Executive Override conflict; i.e., trying to enter a Callback code while same code is assigned to Executive Busy Override and vice versa.	Check code entered: 1. If code is correct, terminate entry, remove other appearance of code and re-enter all new data. 2. If code is incorrect, press key associated with entry and re-enter extension number or access code.
E5	Number entered contains incorrect number of digits or conflicting option enabled in this COS.	EXTN NUMBER, ACCESS CODE	None	The extension number or access code is in conflict with the existing numbering plan. Attempting to add an option to a COS in which a conflicting option is enabled. Attempting to add a System Option when a conflicting option exists.	Check entry. Press key associated with entry and re-enter number.

TABLE 4-5 (CONT'D)
STANDARD PROGRAMMING ERROR CODES

Error Code	Cause	Key Affected	Key Flashing	Meaning	Action Required
E6	Incorrect equipment number entered.	EQPT NUMBER	None	Attempting to assign an equipment number that is: - undefined - defined as a trunk to an extension hunt group or extension - defined as an extension to a trunk group or a trunk - an extension with message registration to hunt group or pickup group. An equipment number assigned to an extension must be deleted as an extension, before being programmed as a trunk An equipment number assigned to a trunk must be deleted as a trunk, before being programmed as an extension.	Remove conflicting option: (a) Assign equipment number correctly (b) Enter new equipmer number.
E6	In extension mode, the equipment number is assigned as: a call announce port, a programmed SUPERSET set or a single line set with appearances.	EQPT NUMBER	None	The equipment number selected to be programmed has already been set programmed in the SUPERSET set programming as a SUPERSET set, a single line set with appearances or an announce port.	Enter correct equipment number or delete conflicting SUPERSET programming.
E6	In trunk mode the trunk selected has appearances on a SUPERSET set.	EQPT NUMBER	None	The trunk equipment number already has an appearance on a SUPERSET set.	Delete appearances on the SUPERSET set.
E7	System is busy.	ENTER	None	la) Attempting to initialize a system while system is in use. (b) Attempting to change data of an extension or trunk while that extension or trunk is in use. it must be idle or busied-out.	(a) Wait until system is idle. (b) Wait until extension or trunk is idle.
	Extension has a message register that is not zeroed or has a message waiting, or has Do Not Disturb set.	ENTER	None	- A valid message register exists for this extension. - Extension has a message waiting or Do Not Disturb set.	Zero message register, reset message waiting or Do Not Disturb and reprogram.

SECTION MITL9105/911 0-096-350-NA

TABLE 4-6
STANDARD PROGRAMMING (CONFIRM) CODES

Confirm Code	Cause	Key Affected	Flashing Lamp	Action Required
C 0	Attempting to assign an equipment number for an extension to a slot containing a trunk card.	EQPT NUMBER	CONFIRM	Check assignment: - If correct, press CONFIRM button. Equipment number entered is accepted as the number for the equipment type being
c 0	Attempting to assign an equipment number for a trunk to an empty slot or a slot containing an extension card.	EQPT NUMBER	CONFIRM	programmed. All data associated with the original appearance of the equipment number is removed. - If incorrect, press EQPT NUMBER and re-enter new equipment number.
C2	The busy lamp assignment already exists.	BUSY LAMP	CONFIRM	Check assignment: -- If correct, press CONFIRM button. Busy lamp assignment is accepted for this equipment. All data associated with origir assignment is removed. - If incorrect, press BUSY LAMP and re-enter busy lamp assignment.

TABLE 4-7
EXTENDED PROGRAMMING TOLL PROGRAMMING ERRORS

Error	Applies to:	Meaning
E0	All modes	Invalid key pressed. Consult MAP for correct procedure. System Option 292 may not be enabled.
El	Absorb Plan mode Trunk Group mode Control Plan mode	Number is not within the range of the parameter being defined. Press parameter key defined and enter new correct number.
E2	All modes .-	An attempt was made to leave the current mode after some parameters were changed but before ENTER or CANCEL was pressed. ENTER may be used to write the new programming information back to the non-volatile RAM, or use CANCEL to ignore all programming changes made since the last time ENTER was pressed.
E3	Control Plan mode Table mode	The number entered is not valid.
E4	Table mode	The table entry code is invalid for the table programmed. This occurs in the following situation: 1. A code of more than three digits in length for an 800 -entry or 20 -range table. 2. A code not in the range of 200-999 for an 800-entry table. 3. A code which already exists or a code which would be ambiguous in conjunction with the existing table entries, for a 4 -entry table.
E5	Table mode	The table is full and cannot hold the entry.
E7	Config/Init mode	Initialization is not allowed because the Tone Control card switches are not 7776 or the system is not idle.
E9	Configuration mode	A hardware failure was detected while clearing the extended customer non-volatile RAM.

TABLE 4-8
EXTENDED PROGRAMMING TOLL CONTROL CONFIRM CODES

Error	Applies to:	Meaning
c5	Control Plan mode Table mode	An attempt was made to assign a table which is currently assigned elsewhere. Pressing the confirm key will de-assign the table from wherever it was previously assigned, to assign it to the specified place.
C6	Table mode	A request has been made to delete all entries in a table. If CONFIRM is pressed, all entries will be de-assigned. The old data in the non-volatile RAM will not be destroyed until the ENTER button is pressed, and the table itself can be reprogrammed as desired before the ENTER button is used.

TABLE 4-9
extended programming speed call error codes

Error'	Applies To:	Meaning
El	EQPT NUMBER	The equipment number entered is outside the range of valid numbers.
El	NUMBER REDIAL	An invalid number redial value was entered.
E3	table	The table number entered is not consistent with that allowed.
E4	ACCESS NUMBER	An attempt was made to enter an access number for common-use table.
E4	NUMBER REDIAL	An attempt was made to enter a number redial digit for a common-use table.
E5	ACCESS NUMBER	The access number entered already exists for another table assigned to the same equipment number.-
E5	NUMBER REDIAL	Number redial already exists for another table assigned to the same equipment number (only one number redial attribute per user is allowed).
EO		System Option not enabled or Wrong key pressed

EXTENDED PROGRAMMING AUTOMATICTABLE 4-10 ROUTE SELECTION PROGRAMMING ERROR CODES		
Error	Applies to:	Meaning
E0	All modes	Invalid key is pressed
Area Code Table mode Area/Office Code Table mode Routing Table mode Local Area mode Table Quantity mode	Number is not within Range	
E2	All modes	An attempt was made to leave the current mode after parameters were changed but before ENTER or CANCEL was pressed
E3	Office Code mode	The Office Code Table Number is not valid for this configuration
E4	Routing Table mode	An attempt was made to enter trunk group \# that is not dialed
E5	Office Code Table mode	The Entry Office Code Table is full and cannot hold the entry
E6	Routing Table mode	Schedule A hours and Schedule B hours are not mutually exclusive
E7	Config/Init mode	Same as Toll Control programming
E8	Schedule Choice mode	Trunk Group not defined in Standard Programming

\therefore TARJE 4-1 1
EXTENDED PROGRAMMING AUTOMATIC ROUTE SELECTION CONFIRM ERROR CODE

E r r	r	Applies	to:		Meaning
C 6	Area Code	\because		A request has been made to delete all entries in a table	

TABLE 4-12 (CONT'D)
EXTENDED PROGRAMMING ERROR CODES - SUPERSET PROGRAMMING

Error Code	Key involved	Explanation
E22	PRIME KEY	This occurs when attempting to add a prime, but the directory number supplied exists, and does not exist as a primeless list. This error is also given if the directory number supplied (when adding a prime) does not exist, but conflicts with an existing system access code.
E23	REVIEW	This is given in Review mode, when the directory number supplied does not exist, or is in conflict with an existing system access code.
E24	REVIEW	This is given in Review mode, when the directory number supplied exists, but not as either a prime line access code -or the access code for a primeless appearance list. This error indicates in the first three digits of the SOURCE display who the actual owner is. If the first digit is $\mathbf{0}$: -000-135 equipment numbers 1 to 136 -136 - 147 trunk group numbers 1 to 12 -148-159 hunt group numbers 1 to 12 $-160-255$ equipment numbers 161 to 256 . If the first digit is a 1 : $000-063$ service routines 1 to 64 (features).
E25	LISTED NUMBER	An attempt has been made to change the DN of a Prime key, but the new directory number (listed number) is in use or is in conflict with an existing access code. The new listed number for a Prime key must be unique, and cannot be that of a primeless list even.
E26	TRUNK EQPT NUMBER	The equipment number entered (after pressing TRUNK EQPT NUMBER) is not that of a defined CO trunk or Dial-In trunk The equipment number entered here must have been defined in Standard Programming as a trunk Also, if in Review mode, this error means that the equipment number entered (after pressing TRUNK EQPT NUMBER) has not been used for either a DTS or private line key.
E27		The trunk is currently assigned to a DTS appearance list. An attempt has been made to use it for a private line key.
E28		An attempt has been made to assign a port for call announce use but the port is currently programmed for another function. The Call Announce Port must be dedicated to the call announce function.

TABLE 4-12 (CONT'D)
EXTENDED PROGRAMMING ERROR CODES - SUPERSET PROGRAMMING

| Error |
| :---: | :--- | :--- |
| Code |\quad| Key |
| :--- |
| involved |\quad| E28 |
| :--- |
| E3NOUNCE EQPT |
| NUMBER |

TABLE 4-12 (CONT'D)
EXTENDED PROGRAMMING ERROR CODES - SUPERSET PROGRAMMING

irror ;ode	Key Involved	Explanation
E43		An attempt was made to delete a prime, but the set has a message waiting, and deletion is not allowed.
E44		An attempt was made to delete a prime, but the set has a nonzero message register, and deletion is not allowed.
E45		An attempt was made to delete a Non-Prime/key, but the key was not idle, and deletion is not allowed. Also given when one of the Non-Prime keys is not idle when a deletion is attempted.
E50		An attempt was made to add a Prime key, but 64 sets have already been defined.
E51		An attempt was made to add a Non-Prime key which requires an internal system resource, of which all have been used. If any multiple call key, or an entire primeless key line list is deleted, one resource will be freed.
E52		An attempt was made to add a Non-Prime key which requires an internal system resource. This time, if either a complete DTS or private line list is deleted, one internal resource will be freed.

Special set error numbers are arranged in groups, with each numerical group having a general significance. The groups are:

- EO-Eg No special significance.
- EIO - EI9 The required parameters were not entered.
. E20 - E29 There are incompatibilities with the database values and the parameter values being entered to define or change a key.
- E30 - E39 There are prerequisites to the operation being attempted which have not been satisfied.
- E40 - E49 The desired operation cannot be performed due to system activity involving the set or key selected.
. E50 - E59 The desired operation cannot be performed due to internal system limitations.

Note: An E5 error will be given when entering (or moving) a SUPERSET equipment number to a slot that would indicate more than eight slots programmed.

TABLE 4-13
ATTENDANT UCD ACCESS CODES
To program a RAD from the console:
Dial $* 230$
Dial RAD equipment number
Dial * to advance to next equipment number
Press RELEASE to terminate.
To program a RAC from the console:
Dial $* 231$
Dial RAC equipment number
Dial $*$ to advance to next equipment number
Press RELEASE to terminate.
To delete a RAD *230<nnn>\#, Cancel then Release.
To delete a RAC $\times 231<n n n>\#$, Cancel then Release. nnn= Eq\#

To review all defined RADs and RACs:
Dial $* 232$
Continue to dial * to advance to next RAD/RAC
Press RELEASE to terminate.
The SOURCE display will show the equipment number in the left corner ar a 0 or 1 in the right corner to indicate a RAD or RAC, respectively.

To record a message on the MITEL RAC, the following procedure is used:
Dial $* 240$
Dial RAC equipment number
Dial *
When the attendant hears a 50 ms tone, the message may be spoken in handset. The recording can be up to 8 seconds in duration.
Press RELEASE to terminate.
To playback a recorded message from a RAC:
Dial $* 241$
Dial RAC equipment number
Dial *
Message will be heard with handset; otherwise busy tone will be heard if th recording is currently in use.
Press RELEASE to terminate.
The length of the messages on the devices in each Recording Group must t specified:

Dial $* 242$
Dial Recording Group access code recording duration, in 'L-digit seconds Press RELEASE to terminate.

TABLE 4-13 (CONT'D)
ATTENDANT UCD ACCESS CODES
To specify the recording and delay time for an Agent Group:
Dial $* 243$
Dial Agent Group access code
Dial 1
Dial Recording Group access code
Dial time delay, in 2-digit seconds
Dial *
Press RELEASE to terminate.

To review a recording assignment:
Dial $* 244$
Dial Agent Group access code
Dial 1
Dial *
Press RELEASE to terminate.
To delete all data associated with an Agent Group (Recording Group and delay time assignments):

Dial $* 243$
Dial Agent Group access code number Press RELEASE to terminate.

To define which Recording Group a DID Intercept will be routed to:
Dial $* 233$
Dial Recording Group access code Press RELEASE to terminate.

To delete an existing DID Intercept recording:
Dial *233
Dial \#
Press RELEASE to terminate.
To define which Recording Group an Automatic Wake-up will be routed to:
Dial *234
Dial Recording Group access code
Press RELEASE to terminate.
To delete an existing Automatic Wake-Up recording:
Dial *234
Dial \#
Press RELEASE to terminate.

5. SYSTEM OPERATION

General

This Part will discuss events which occur within an SX-IOO/SX-200 system during the operation of extensions, trunks, consoles and SUPERSET 4 electronic telephone sets. From this Part the repair person should be able to discern a basic working knowledge of the system. Also in this Part is a series of tables which list error codes and problems that may occur. These tables will provide a solution to each problem, or reference a MAP in the appendices for the appropriate remedial action.

Extension Operation

5.01 Each extension is assigned to a specific equipment number on

 a specific Line card (Figure 5-I). When an extension goes offhook, it will complete a circuit and draw loop current. This loop current will cause the LED (on the Line card) associated with that equipment number to light. At this time there are up to 31 speech paths available for assignment to the off-hook extension. Each Line card has an 8×32 switching matrix, providing access to 31 speech paths and one Music-on-Hold (MOH) path (Figure 5-I). The Scanner card will detect the off-hook condition on the Line card and report the equipment number to the Central Processor Unit (CPU). The CPU (through its Random Access Memory or RAM) will find a free speech path and test it, using circuits on the Tone Control card. After the speech path is tested, the CPU connects it to the line circuit and a free receiver is located. The selected receiver, and dial tone from the Tone Control card, are then connected to the free speech path (Figure 5-2).5.02 When the first digit is dialed, it is detected by the Receiver card. (The Scanner card reports to the CPU that the Receiver card has a digit. The DTMF or DP information is decoded by the Receiver card.) The digit is read by the CPU. Upon reception of the first digit, the CPU will inform the Tone Control card to drop the dial tone. The Receiver card will continue to monitor and decode digits until the CPU recognizes a digit sequence or determines an invalid sequence. This digit sequence may access a feature, a trunk, the Supervisor, or another extension. If the option selected is busy, the extension will receive busy tone from the Tone Control card.
5.03 When an extension dials a sequence that requires the use of a
feature, the CPU must first check that extension's COS. If the extension's COS does not allow access to that feature it will be assigned (by the CPU) reorder tone from the Tone Control card. If feature access is permitted, the CPU will act according to the memory stored in the RAM. All information will be stored in the system's RAM by the CPU. It should be noted that the Scanner card. informs the CPU that the Receiver card has a digit decoded for each digit the extension dials. The CPU controls all tones (i.e., supervisory tones that the extension may receive) switching them on/off at the correct rates.

Figure S-I Speech Paths
5.04 If the call is an inside call (within the PBX), the extension mı access a speech path as per paragraph 5.01. The receiver v decode the first digit dialed. The Scanner card will inform the CPU tr the Receiver has a decoded digit for it. The CPU will consult the RA as per paragraph 5.02 to determine the validity of the digit and 1 action required. Until the CPU is able to confirm an action to t performed with the digits received, all digits will be stored in the R/ Should the first digit or digit sequence be considered invalid by 1 CPU, reorder tone (from the Tone Control card) is connected to t speech path. A valid extension number causes the Tone Control ca to provide either ringback or busy tone (all tones are controlled by 1 CPU) to the calling extension. Before actually ringing the called ext sion, the CPU consults its RAM to check for any form of Call Forwat ing, Do Not Disturb or extension restriction (i.e., Originate Only). these cases, the calling extension will be forwarded or it will rece reorder tone (from the Tone Control card).
5.05 If the call is an outside call with no dialing restriction, t extension must be assigned a speech path (paragraph 5.02). 1 CPU will locate a free trunk corresponding to the access code dia (see Section MITL9105/91 10-096-210-NA). If there is not a free tru

Figure 5-2 Select a Speech Path

Figure 5-3 Inside Call
the CPU will connect busy tone (from the Tone Control card) to the speech path which the extension is assigned to. After recognition of a legitimate access code, the receiver will be dropped if tone-to-pulse conversion is not required. If tone-to-pulse conversion is required the receiver will decode the tones. The CPU will cause the Trunk card to outpulse the equivalent in pulses on the trunk

5.06 If the call is an outside call (Figure 5-4) with digits 0,1 , \#, or *

 dialing restriction, the extension must be assigned a speech path (paragraph 5.02). The CPU will then locate a free trunk corresponding to the access code dialed (see Section MITL9105/9110-090-205-NA). If there is not a free trunk, the CPU will connect busy tone (from the Tone Control card) to the speech path. The receiver will decode the first and second digit dialed into the trunk if System Option 291 (First Digit Toll Deny) is selected; only the first digit is monitored on the trunk The CPU will then decide if the digit that has been decoded is a $0,1, \#$, or $*$. If it is, then reorder tone (from the Tone (Control card) will be supplied to the speech path that the extension is assigned to and the trunk will be released. If the second digit is

Figure 5-4 Outside Call - 0 and 1 Dialing Restriction
something other than a 0,1 , \# or $*$ the call will be allowed. The receiver will be dropped at this point if tone-to-pulse conversion is not required (see paragraph 5.03).
5.07 For an outside call with SMDR, Multi-Digit Toll Control or ARS in effect (Figure 5-5), the extension must first successfully access a speech path (paragraph 5.02). The CPU must find a free trunk according to the access code'dialed, and that extension's COS (unless ARS is in effect). If there is not a free trunk, busy tone will be returned from the Tone Control card. If the access code dialed is not in the extension's COS, reorder tone will be returned from the Tone Control card. If the ARS is in effect, digits dialed will be compiled in a receiver buffer until the entire number has been collected. The receiver will decode all digits for the CPU until the last digit or a maximum of 26 digits is dialed. In the case of SMDR all digits dialed will be stored in a trunk buffer until they may be output to a recording device. If ARS is in effect, the CPU will consult the RAM as to the correct route (trunk group) to select (subject to time, availability and preference). The CPU will cause the receiver to inform the trunk selected of the digits to -be
output. At this time, digits being sent by the Trunk card are monitored by the receiver and are subject to Multi-Digit Toll Control (if enabled). The CPU will consult the RAM memory as to toll control for each digit received. If the call is allowed by toll control, the call will go through. If the call is not allowed, reorder tone will be returned from the Tone Control card and the trunk will be released.
5.08 The circuit operations described above are similar to those required for Tie-Trunk circuits with the following exception. For DP extensions to DP tie-trunk circuits, the requirement exists to inhibit dial-train distortion arising as a result of tandem operation through one or more tie trunks. For this reason, when the trunk processor receives the input data it causes the output to the tie-trunk to be a regenerated train of dial pulses. The trunk processor will isolate the speech path to prevent dial pulses from feeding back to the extension.

Console

5.09 The console does not have a switchhook, rather the console is off-hook whenever the console handset is plugged in. To originate a call it is only necessary to press the button of the figure number or feature. The console communicates through the Interconnect card to the system via the- Console Control card. The Scanner card will then inform the CPU that the Console Control card has information for it. Note: A Receiver card is not used for dialing from the console. As in the case of an extension the console must be assigned a free speech path. This is done after the first button (I-9, \#, * or feature button) is pressed. If an invalid digit or digit sequence is entered, the console will receive reorder tone from the Tone Control card. If all speech paths are occupied, the console will receive no tones or audio from the system. The Tone Control card will also provide ringback or busy tone for the console.

5.10 The dialing of a valid extension number prompts the CPU to

 select a particular extension on a particular Line card (as determined by the programming in the non-volatile RAM). The CPU sends a command to turn ringing current on and off to the extension. When the extension is answered, the CPU detects an off-hook and disconnects ringing. The CPU then connects the called extension to the speech path of the console.
Dialing a Trunk (From a Console)

5.11 The console dial pad produces digital signals which are stored by the CPU. After the trunk access code has been dialed, the subsequently keyed signals are forwarded to the CPU, where, after decoding, they are forwarded to the Trunk card and outpulsed to the trunk line. Note that a Receiver card is not required for this configuration. If the circuit is programmed as a DTMF trunk circuit, a tone generator will be inserted. This results in the signals being translated into DTMF tone pulses which are then placed on the speech path (not into the Trunk card) and forwarded to the trunk circuit for outward transmission. The audio path is isolated back to the console when the DTMF transmission takes place.

Figure 5-5 Outside Call - Multi-Digit Toll Control, or SMDR or ARS in Effect

Note: If wait for Dial tone is programmed on the trunk group, the console will use a receiver, if available; otherwise no receiver is assigned.
5.12 The console indicators are refreshed and/or updated continuously every 100 ms by the CPU. These indicators include the 7-segment display for the time-of-day clock, the source and destination readouts and the calls-waiting display as well as over 200 LEDs. The status of each of these indicators is maintained in the volatile RAM on the IPC card. Every 100 ms , the processor addresses the RAM on the Console Control card and sends it information for each of the two consoles. This data is then sent along a pair of wires to the console. In the console, the information is stored in a RAM. At this point, the console's CPU takes control and sorts this input "file" into the form required to turn the LEDs and the console ringer on/off.

Hook-Flash

5.13 A hook-flash is defined for the system as an on-hook condition, of between 200 ms and $1500 \mathrm{~ms}(700,900$ or 1100 ms may be used as a System Option). A flash may occur in an off-hook condition where a speech path has been established between an extension and a trunk or between two extensions. When an extension flashes the switchhook, the Scanner informs the CPU. The CPU checks its memory to determine whether a flash is legal. If not, the extension is disconnected from the speech path. The flash is interpreted as the beginning of a new call. However, when a flash is determined to be a legal operation, the CPU starts a timer. If the extension goes back off-hook within the specified time period, it is considered to be flashing. An on-hook of less than 200 ms is considered to be a noise glitch, while an on-hook greater than 1500 ms (700,900 or 1100 ms alternatively) is considered as a call termination (hang-up).

5.14 When a flash is detected; the processor disconnects the flash-

 ing extension from its speech path, finds a free speech path which it tests, and connects the extension to it. It then provides transfer dial tone (from the Tone Control card) and connects a receiver to the speech path, allowing the extension to dial and converse privately with a third party. If the extension had flashed out of a conference, the conference is unaffected. However, if the other party was not in conference, it is disconnected from its speech path and connected instead to HOLD.
Incoming Calls (GS/LS Trunks)

5.15 When the trunk circuit detects ringing voltage, forward or reverse current, or a tip ground (ground start trunks), the trunk's microprocessor informs the CPU. The LED on the Trunk card will light and the CPU reads a status report from the trunk. The CPU finds and tests a speech path and notifies the programmed.equipment. The CPU then connects it, and the trunk to the speech path, and sends a command to the Trunk card. The Trunk card then terminates the trunk circuit and enables the audio. If the trunk has been programmed for DISA, the system processor waits 10 seconds before answering and
then connects a receiver and a dial-tone generator. This allows the trunk to appear as though it were an extension. A DISA trunk enables a dial-in caller to dial internal stations and features.

5.16 Figure 5-6 identifies all equipment numbers that may be as-

 signed in an SX-IOO/SX-200 system. This figure will aid the repair person in the association of equipment numbers to specific slots and thereby specific cards. There are eight extensions per Line card slot, two E/M or tie trunks per trunk card slot or four CO trunks per Trunk card. All trunk equipment numbers will appear as even numbers (i.e., 50). For the explanation of the error codes and their meaning see Part 4 of this Practice.
SUPERSET 4 Set Operation

5.17 Each SUPERSET set is assigned to a specific equipment number

 on a specific SUPERSET Line card. When a SUPERSET set goes off-hook, the UART on the Line card informs the CPU, and the CPU causes the LED (on the Line card) associated with that equipment number to light. At this time there are up to 31 speech paths available for assignment to the off-hook SUPERSET set. Each Line card has an 8 x 32 switching matrix, providing access to 31 speech paths and one Music-on-Hold (MOH) path. The CPU (through its Random Access Memory (RAM)) will find a free speech path and test it, using circuits on the Tone Control card. After the speech path is tested, the CPU connects it to the line circuit. Dial tone from the Tone Control card is then connected to the free speech path.5.18 When the first digit is dialed, the CPU determines if the digit is a requirement for an internal call or external call, or if more digits are required to define the call. Regardless, upon reception of the first digit, the CPU will inform the Tone Control card to drop the dial tone. If the option selected (as defined by the digits dialed) is busy, the SUPERSET set will receive busy tone from the Tone Control card. The CPU will react to the first digit or the remaining digits as per the following paragraphs.
5.19 When a SUPERSET set dials a sequence that requires the use of a feature, the CPU must first check the SUPERSET set's COS. If the SUPERSET set's COS does not allow access to that feature, it will be assigned (by the CPU) reorder tone from the Tone Control card. If feature access is permitted, the CPU will act according to the memory stored in the RAM. All information will be stored in the system's RAM by the CPU. It should be noted that the Scanner card informs the CPU that the Receiver card has a digit decoded for each digit on a trunk the SUPERSET set dials. The CPU controls all tones (Le., supervisory tones that the SUPERSET set may receive), switching them on/off at the correct rates.
with the digits received, all digits will be stored in the RAM. Should the first digit or digit sequence be considered invalid by the CPU, reorder tone (from the Tone Control card) is connected to the speech path. A

valid SUPERSET number causes the Tone Control card to provide (either ringback or busy tone (all tones are controlled by the CPU) to the calling SUPERSET set. Before actually ringing the called SUPERSET set, the CPU consults its RAM to check for any form of Call Forwarding, Do Not Disturb or a SUPERSET set restriction (i.e., Originate Only). In these cases, the calling SUPERSET set will be forwarded or it will receive reorder tone (from the Tone Control card). At the same time, if the call is to another SUPERSET set, the CPU will cause the appropriate prompts to be lit at the SUPERSET set involved.
5.21 If the call is an outside call with no dialing restriction, the SUPERSET set must be assigned a speech path (paragraph 5.17). The CPU will locate a free trunk corresponding to the access code dialed (see Section MITL9105/9110-096-210-NA). If there is not a free trunk, the CPU will connect busy tone (from the Tone Control card) to the speech path which the SUPERSET set is assigned to. After recognition of a legitimate access code, the SUPERSET set is connected directly to the trunk. The CPU will cause the Trunk card to outpulse the equivalent tones in pulses on the trunk

5.22 If the call is an outside call with digits 0 , 1 , $\#$, or \ldots dialing

 restriction, the SUPERSET set must be assigned a speech path (paragraph 5.17). The CPU will then locate a free trunk corresponding to the access code dialed (see Section MITL9105/91 10-096-210-NA). If there is not a free trunk, the CPU will connect busy tone (from the Tone Control card) to the speech path. The receiver will decode the first and second digit dialed into the trunk if System Option 291 (First Digit Toll-Deny) is selected; only the first digit is monitored on the trunk. The CPU will then decide if the digit that has been decoded is a $0,1, \#$ or $*$. If it is, then reorder tone (from the Tone Control card) will be supplied to the speech path that the SUPERSET set is assigned to and the trunk will be released. If the second digit is something other than a 0,1 , \# or $*$, the call will be allowed. The receiver will be dropped at this point if tone-to-pulse conversion is not required.
5.23 For an outside call with SMDR, Multi-Digit Toll Control or ARS

 in effect, the SUPERSET set must first successfully access a speech path (paragraph 5.17). The CPU must find a free trunk according to the access code dialed, and that SUPERSET set's COS (unless ARS is in effect). If there is not a free trunk, busy tone will be returned from the Tone Control card. If the access code dialed is not in the SUPERSET set's COS, reorder tone will be returned from the Tone Control card. If ARS is in effect, digits dialed will be compiled in a receiver buffer until the entire number has been collected. The receiver will decode all digits for the CPU until the last digit or a maximum of 26 digits is dialed. In the case of SMDR, all digits dialed will be stored in a trunk buffer until they may be output to a recording device. If ARS is in effect, the CPU will consult the RAM as to the correct route (trunk group) to select (subject to time, availability and preference). The CPU will cause the receiver to inform the trunk selected of the digits to be output. At this time digits being sent by the Trunk card are monitored by the receiver and are subject to Multi-Digit Toll Control (if enabled). The CPU will consult the RAM memory as to toll control for each digit received. If the call is allowed by toll control, the call will go through. Ifthe call is not allowed, reorder tone will be returned from the Tone Control card and the trunk will be released.

Tables
5.24 Table 5-1 is a list of all tables to be used in the actual troubleshooting of the SX-IOO/SX-200 system. Table 5-2 is a list of the error codes that may appear on the console during regular operation, Table $5-3$ is a list of extension faults, Table $5-4$ is a list of console faults, Table 5-5 is a list of trunk. faults and Table 5-6 is a list of system faults. All tables suggest immediate remedial action or provide a direct reference to a MAP that will incorporate the proper actions.

TABLE 5-1
TABLE LISTING FOR TROUBLESHOOTING

Table	Title
$5-2$	Error Code Procedures
$5-3$	Extension Fault Report Procedures
$5-4$	Console Faults
$5-5$	Trunk Fault Report Procedures
$5-6$	System Faults

5.25 In the following tables (5-2 to 5-6) a STOP indication should be taken as: STOP; contact your nearest authorized MITEL Service representative.

TABLE 5-2
ERROR CODE PROCEDURES

| Source
 Display | Alarm | Reason | Step 1 | Step 2 |
| :--- | :--- | :--- | :--- | :--- | :--- |

[^0]TABLE 5-2 (CONT'D) ERROR CODE PROCEDURES

Source Display	Alarm	Reason	Step 1	Sitep 2	itep 3
E013	minor	Supervisory tone missing	Replace Tone card	Replace Receiver cards one at a time	'erform Speech 'ath Test へAP350-702
E014	minor	```Receiver dial-tone detector not working```	Replace Receiver card specified in the SOURCE display	Change Tone Control card (slot 18)	STOP
E015	minor	Probable receiver error	Replace Receiver card specified in the SOURCE display	Replace the Tone Control card (slot 18)	'erform Speech 'ath Test AAP350-702 jTOP
E018	minor	Speech path shorted out	Perform Speech Path Test MAP350-702	Perform Common Control Test MAP350-701	
E019	minor	16 speech paths have been found in error, probably a fault in the checking circuit	Dial maintenance code followed by 1. Wait to see if error returns	Replace Tone Control card. Perform Common Control Test MAP350-701	'erform Speech 'ath Test ИAP350-702 STOP
E020	minor	Excessive errors in console data circuits	Change console Control card specified in the DESTINATION display'	Change console :specified in MAP350-501	Zheck voltages on interconnect ard MAP350-601 STOP
E020-22	minor	Checksum error in the RAM	If the system presented error during normal operation change IPC card (slot 20), initialize Memory as per MAP Section MITL9105/ 91 10-096-210-NA. This error will occur on a (new) unprogrammed RAM card.	IReplace IPC card and treprogram the :system STOP	
$\begin{aligned} & \text { E023-20 } \\ & -002 \end{aligned}$	minor	RAM battery Voltage Out of Tolerance	Ensure that a backup of RAM Data is made before IPC card is replaced.	Replace IPC Card	

TABLE 5-3
EXTENSION FAULT REPORT PROCEDURES

Fault Reported As	Step 1	Step 2	Step 3
Extension dead; no battery (side tone)	Check the equipment number; locate the Line card. See if the line LED is lit. If it is, check with a butt-in at the frame to verify set and house wiring. Buzz the pair. Ensure the console has not busied-out the extension.	At the console check that the extension programming is correct.	Change the Line card STOP
No dial tone at the extension; battery (side tone) present	Check the equipment number LED on the Line card. If it is lit, check the extension wiring by dialing with a butt-in at the frame. Buzz the pair.	Check other extensions on the same card for dial tone. If dial tone is missing on all card extensions, replace the line card. If the dial tone is absent systemwide, replace the tone control card. Note: Dial tone delays will occur if all receivers are busy.	STOP
Busy lamp on Line card stays on permanently	Check extension for lockedout.	Buzz extension for cable short.	STOP
Extension cannot break System dial tone	Check extension with a butt-in at the cross-connect field. From the test line use the thumbwheel switches on the Tone Control card to select each receiver and verify dial tone can be broken.	Replace the Line card.	STOP
Extension can receive calls but cannot make calls	At the console check the extension's COS to ensure it is not receive-only. Check the extension with a butt-in at the cross-connect field.	Replace the Line card.	STOP
Extension can make internal calls but cannot access a Trunk (busy or intercept tone returned1	Check for all trunksbusy condition. At the console check the extension's COS.	Check that the Controlled Outgoing Restriction is not in effect (see Section MITL9105/9110-096-105- NA). Ensure that the trunks are available and working by accessing them directly from the test line or console.	Check that the Trunk Group is not Supervisor Access only
Extension cannot access a feature	At the console check the extension's COS and check the feature access code.		STOP
Extension cannot break CO dial tone	At the cross-connect field check that the trunk is returning CO dial tone and can be broken. If the extension is DTMF, check that the CO trunks are capable of DTMF or that the Trunk Group is programmed for DTMF-to-DP conversion.	Check that the 3rd-wire trunk switch setting is closed. If open ensure that there is no ground on the XT lead.	Replace Trunk card STOP

TABLE 5-3 (CONT'D)
EXTENSION FAULT REPORT PROCEDURES

Fault Reported As	Step 2	Step 3	
Wrong numbers after accessing a trunk	If CO trunk can accept DTMF, ensure that the DTMF-to-DP conversion is not programmed in the Trun Group.	Replace Trunk card.	STOP
Wrong numbers local	Do Receiver card test from the test line. -48 Vdc bad; replace power supply.	STOP	
Crosstalk on most extensions and trunks			

Note: Some problems that Line card replacement may cure: no ring, noisy battery and noisy lines.
TABLE 5-4 CONSOLE FAULTS

Fault Reported As	Step 1	Step 2	Step 3
Console dead except for for colon in time display and minor alarm	Ensure that the handset is properly inserted in the jack Try the other jack	Replace Console Control zard	Check interconnect card voltages: $\begin{aligned} & \text { SX-100, MAP350-605 } \\ & \text { SX-200, MAP350-601 STOP } \end{aligned}$
Console dead no displays	Check that the console cable is plugged firmly into the console and interconnect card. Check that the console cable is plugged into the correct position on interconnect card.	Check interconnect card voltages: SX- 100, MAP350-605 SX-200, MAP350-601 Replace console MAP350-501	STOP
Dial or feature button inoperative	At the console check that this feature button is programmed.	Press a console button and observe the Console Control card to see if the Data LED flickers. If it doesn't, there may be a console problem; see MAP350-501	Replace the Console Control card Replace the console, MAP350-501 STOP
Console noisy or no audio	Change the handset/headset Change the handset to the other jack	Replace Console Control card. Replace console.	STOP
Console displays garbage	Unplug console control card and plug it back in. If the console returns to normal, it has been affected by static discharge. Ensure the systen has a console interface card (SX-200 only).	$\begin{aligned} & \text { Perform the Common } \\ & \text { Control Test } \\ & \text { MAP350-701 } \end{aligned}$	STOP
Incoming trunk calls not coming to the console	Check console for Night Service. Ensure Printer buffer is not full; i.e., SMDR in effect and the printer stopped (䒘14*).	Check that the console handset is plugged into the console and the console power fail transfer switch is set to normal.	Check programming to ensure trunk is not a direct-in line STOP
Random errors indicating fault on second shelf	Check that programming is complete for second shelf.	Check intershelf connectors and tables. Ensure that it is located correctly.	STOP

TABLE 5-5
TRUNK FAULT REPORT PROCEDURES

Fault Reported As	Step 1	Step 2	Step 3
Wrong numbers trunk card	Check the trunk at the cross-connect field DTMF and DP. Ensure that the system is not programmed to outpuise both DTMF and DP to a DTMF trunk Check that DTMF tones are not going into a DP Trunk	Check for reverse, or check the System ground. Check trunk and trunk group type. Ensure that the DTMF and DP are not going into a DTMF trunk Ensure you are not dialing tie trunk-to-tie trunk	Replace the Trunk card. Replace the Receiver card if there is DTMF-to-DP conversion STOP
Always receives busy tone after dialing a trunk access code	Check for correct trunk access code. Check for Call Blocking. Check Trunk Group for Supervisor Access only. Check for full printer buffers, Automatic Wake-Up and SMDR.	Check for reverse or open tip and ring on trunk Check System ground. Check for two loop start trunks connected together. Check for ground start open.	Replace suspect trunk card STOP
Cannot break CO dial tone	Check the trunks at the cross-connect field for DTMF and DP switches. Check Trunk card, Section MITL9105/911 0-096-200-NA. If there is tone-to-pulse conversion, replace the Receiver card.	If the trunk tests good replace the Line card. Check the dial dictation.	STOP
Trunks dropped by the system	Check for intermittent extension switchhook At the cross-connect field check the trunk with a butt-in; ensure this is not a CO problem.	On the Trunk card, check that the 50 ms switch in position. Program for longer switchhook flash (System Options 114, 180, 181, 182).	Replace the Trunk card STOP
Trunks being hung on the system	Check trunk type and trunk group programming; i.e., tie trunk-to-CO trunk connections or loop starts trunk together. Ensure there is a good ground for ground start trunks.	Check the trunks provide release supervision. Replace the Trunk card.	STOP
Two trunks ring when only one trunk is rung	Check trunk programming that even numbers are not programmed and odd equipment numbers are wired.	STOP	

Note: These are other trunk card problems that may occur:

- Calls ring in, but don't show up on the console
- One-way transmission
- Noisy trunks (eliminate CO trunk with a butt-in at the cross-connect field first)
- Trunk card alarm LED lit
- Dropped calls from the CO (eliminate CO trunk with a butt-in at the cross-connect field first)
- Station conference oscillations with two or more trunks
- Collisions due to one loop start trunk being seized same time (i.e., incoming and outgoing)
- AC induction on trunks
- Trunks out by one pair when punched down
* Low ringing current (from the CO) at the cross-connect.

TABLE 5-6
SYSTEM FAULTS

Fault Reported As	Step 1	Step 2	Step 3
System completely dead - no power	Check power at commercial AC outlet.	Check that the system power switches are on.	Go to Appendix F, paragraph F1.03 STOP
Shelf 2 dead no power	Check Shelf 2 power MAP350-603.		
Calls cannot be made within the system. Power on.		Perform Common Control Test, MAP350-701.	
			STOP
Meaningless diagnostics or system resets	Perform Common Control Test, MAP350-701.		
Error E012 with an equipment number greater than 160	Intermittent shelf cables.	STOP	
Error E008	Change tone control card or if the problem is intermittent, change shelf.	STOP	
Double connections	Replace Scanner card.	STOP	
Lockout shown on console while station conversing	Replace Scanner card.	STOP	
Shelf power will not come up	Check P301.	Replace Interconnect card.	STOP
If only on Trunk calls check for a tip/ring reversal	Replace Console		
Calls with no one there (at console)	Replace Console.	STOP	
Low console volume	Replace Console.	STOP	
Station Conference oscillates	Trunk limitations.	STOP	
System powered-down; requires new programming	RAM battery dead.	STOP	
Console goes to Night 1 no reason	Bad handset.	STOP	
1/8 A ringing fuse blows	Short on external ringing leads.	STOP	
Extension cannot page	Check programming. Check extension COS. Check access codes.	Go to MAP350-704 STOP	
Night bells don't ring	Check user 48 Vdc and 90 Vac fuses.	Check trunk programming.	Go to MAP350-705 STOP
Music on Hold is not audible	Check input at crossconnect field by clipping a butt-in on incoming pair or by dialing 32 on thumbwheel on Tone Control card and listening on test line.	Change Tone Control card. STOP	

6. SX-1 OO/SX-200 POWER SUPPLY

6.01 The SX-IOO/SX-200 power supply forms an integral part of the equipment cabinets. The SX-100 power supply is housed immediately to the right-hand side (front view) of the equipment shelf (Figure 6-I). In the SX-200 system the power supply is housed in a metal cabinet forming the lower rear door of the system (Figure 6-2). Both supplies are fully R.F.-filtered and may be operated from either AC or DC inputs to produce multiple DC output rails as well as ringing voltage. This Part will discuss the power supplies in four subparts, as follows: AC/DC Converter, DC/DC Converter, Ringing Generator and Out-of-Tolerance. There are also subparts on the Reserve Battery Backup and Charger, and Fusing.

AC/DC Converter

6.02 The SX-IOO/SX-200 AC/DC converter is designed to operate with an AC power source in the range of $100-130 \mathrm{Vac}$ or 200 - 250 Vac, with an internal modification for the SX-200 system and a converter for the SX-100 system (see Section MITL9105/9110-096-200-NA). The SX-200 converter has an output of -60 to -64 Vdc, while the SX-100 converter has an output of -50 Vdc to -56 Vdc.

DC/DC Converter

6.03 The converter output is fed to the main DC/DC converter and Control Voltage Supply. The DC/DC converter may also be fed by a 48 Vdc reserve power supply. The battery supply may be connected permanently and will allow instantaneous cutover should the AC power fail. The control voltage section provides the following voltages:

- +8 Vdc
- -5 Vdc
- 0 Vdc
- -10 Vdc
- -48 Vdc.

Ringing Generator

6.04 The ringing generator uses a -48 Vdc output from the main converter to produce a $90 \mathrm{Vac}, 20 \mathrm{~Hz}$ (optional 17 Hz or 25 Hz) supply for the system ringing.

Out-of-Tolerance

6.05 All voltage levels are regulated 5% except for the -48 Vdc which may vary 10%. An Out-of-Tolerance (OOT) circuit monitors all levels continuously (see Table $\mathrm{Cl}-2$). Should a deviation occur, an OOT signal will activate the power fail transfer circuit through the interconnect card. It should be noted that if a -48 Vdc reserve power supply is used, the power fail transfer will not be activated in the event of a power failure. In the SX-100 and SX-200 systems there are provisions to program a port as a Contact Monitor (MITL9105/9110-

090-105-NA). This monitor may be used to alert the Supervisor that the system is on battery power (Wiring - Appendix C) by wiring it to a contact monitor port (at the cross-connect field).

Reserve Battery Backup and Charger

6.06 The SX-100 and SX-200 systems both accept a -48 Vdc source fed to the terminals indicated on the terminal blocks shown in Figures 6-2 and 6-3. The installation of the reserve supply in the system is described in MITL9105/91 10-096-200-NA. A pictorial view of the power supply is shown in Figures 6-2 and 6-4. The MITEL reserve battery and charger (MITEL Part Number 9110-014-000-NA) has an OOT circuit which may be used to alert the Supervisor that the system is on reserve battery power. The indicator is a dry relay contact that may be used to ring an external alarm or it may be wired to a system port as a Contact Monitor.

Fusing
6.07 The SX-200 system is protected by fuses which are located on the back door of the cabinet (Figure 6-4). The back door has imprinted upon it a circuit description defining each fuse and the circuit breaker. In addition to these fuses there are a series of LEDs which also are defined by the circuit on the back door. These LEDs will be lit if there is power in the area that they designate, or in the case of the reserve battery backup, if the battery is connected. In addition to the cabinet door fuses, there are fuses located on the backplane, Interconnect card and Power Fail Transfer card. The fuse on the Interconnect card protects the console's -48 Vdc and the fuse on the power fail transfer card protects the power fail transfer -48 Vdc.
(a) The SX-100 system has the same backplane as the SX-200; hence the same fusing appears on the backplane. There are three fuses on the Interconnect card for: user 90 Vac, user -48 Vdc and the console - 48 Vdc (Figure 6-3). The front panel of the power supply has two circuit breakers: one is for the DC battery supply and the other is for the AC supply (Figure 6-I).

Note: Some early versions of the SX-100/SX-200 system do not have all the fusing of later models. This point should be taken into account when troubleshooting the system.
(b) If the system is equipped with a reserve battery backup, separate fusing is included in the charger unit itself (Figure 6-6). There are three fuses: a 1 amp charging fuse, a 5 amp output fuse and a 2 amp AC fuse. In addition, there are two 20 amp circuit breakers (one on the battery pack, one on the charger unit) for the battery protection. All reserve battery and charger connections are shown in Figure 6-2 and Figure 6-3. Installation of the reserve battery backup is described in Section MITL9 105/9110-096-200-NA.

FRONT VIEW

REAR VIM
$\left.\begin{array}{|c|c|c|c|}\hline \text { W E I G H } & \text { HEAGHT } & \text { WIDTH } & \text { DEPTH } \\ \hline 31.8 \mathrm{~kg} & \begin{array}{c}422 \mathrm{~mm} \\ (70 \mathrm{lb})\end{array} & \begin{array}{l}635 \mathrm{~mm} \\ (1662 \mathrm{in} .)\end{array} & \begin{array}{l}470 \mathrm{~mm} \\ (25 \mathrm{in} .)\end{array} \\ (18.5 \mathrm{in} .)\end{array}\right]$

Figure 6-I SX-100 Equipment Cabinet and Power Supply

Figure 6-3 SX-100 Interconnect Card

Figure 6-4 SX-200 Back Door Electrical Schematic
6.08 When troubleshooting the systems for power failures, the Power Supply Block Diagram (Figure 6-7), and Charts 6-I through 6-10 should be consulted. The charts outlined cover the trouble and its effect on the system. In most cases the repair person will be directed to a specific MAP for remedial action. Under the heading "Check", a yes answer to the question asked is an indication to go on to the next question in the "Check" column. If a no answer is encountered, the repair person should go to the "Action" column and follow the instructions listed there. There is also a column indicating (by an X) to which system the action applies. Above all, it must be remembered that fuse replacement is not a remedy. The probable cause of a power failure should be determined before the system is powered-up. Utilizing the information provided in this Section and the MAPs referred to in Charts

Figure 6-5 SX-100 Reserve Battery Backup

88
Figure 6-6 Reserve Battery Charger

Figure 6-7 Power Supply Block Diagram
6-I through 6-10, the repair person should be able to pinpoint fau and take proper replacement action. At all times the repair persi should follow all safety precautions suggested in the MAPs to enst maximum personal and equipment safety.

SECTION MITL91 05/911 0-096-350-NA

CAUTION -. DANGEROUS OR LETHAL VOLTAGES

Trouble	Check	sx-100	\$x-200	Action
System completely dead. Suspect primary power failure. No reserve battery backup.	1. Is the $A C$ power LED lit? 2. Is the converter LED lit? 3. Is the maintenance panel LED (power on) lit? 4. Replace the SX-100 power supply, MAP350-403. 5. Replace Heat Sink assembly, MAP350-506. Replace the SX-200 power supply, MAP350-507.	$\begin{gathered} \mathrm{x} \\ \\ \mathrm{x} \\ \mathrm{x} \\ \mathrm{x} \\ \mathrm{x} \\ \mathrm{x} \end{gathered}$	X X	On the SX-200 system, check the rear door, bottom right-hand corner for the AC power LED. Check that the system is plugged in. Check the AC power fuse on the back of the system. Check the AC power at the commercial source with a suitable AC meter or by plugging anothe device into the outlet. There is 5.5 amp converter circuit breaker on the front of the SX-100 power supply. If it is in the ON position, the LED beside it should be lit. There is a 20 amp circuit breaker on the back door of the SX-200 system. If it is in the ON position, the LED beside it will be lit. If the circuit breaker is off, reset it. If the breaker trips again, replace power supply -MAP350-403 (SX-100), MAP350-507 (SX-200). Check that the maintenance panel power on switch is on. Ensure that the maintenance panel cable is connected correctly to the Interconnect card. Check backplane voltages as per MAP350-603.

[^1]CHART 6-2

Trouble	Check	s X-100	sx-200	Action
System power on but no LEDs lit on console. Appears to be no power to the console.	1. Is the handset plugged into the console?	X	X	Plug in handset.
	2. Is the console cable secure?	X	X	Secure console cable.
	3. Is the fuse on the Interconnect card good?	X	X	Check the fuses on the Interconnect cards and replace if blown. Power system up. Replace cable if the fuse blows. Try again.
	4. Is the Interconnect card passing -48 Vdc to the console?	X	X	$\begin{array}{ll} \text { MAP350-605, } & \text { SX-100 } \\ \text { MAP350-601, } & \text { SX-200 } \end{array}$

CHART 6-3

Trouble	Check	$3 x-100$	sx-200	Action
Major Alarm on console. System "• appears to operate normally; ie., calls can be processed.	1. Check that the master transfer switch on the maintenance panel is in operating position.	X	X	Set all switches as per paragraph 2.16.
	2. Check the Power Fail Transfer LED on the PFT board. Is it not lit?	X	X	Change card as per MAP350-401.
	3. Disable all console switches. Did the system remove itself from Power Fail Transfei	X X	X X	OOT condition may exist. Refer to Appendix F. Ensure that the console is in the correct plug.
		$\begin{aligned} & \mathbf{X} \\ & \mathbf{X} \end{aligned}$	$\begin{aligned} & \mathbf{X} \\ & \mathbf{X} \end{aligned}$	Change the console as per MAP350-501. Change the console cable as per MAP350-501.
		X	X	Change the maintenance panel, MAP350-511. (SX-200), MAP350-405 (SX-100).
	```4. Replace the maintenance panel as per MAP350-511 (SX-200) MAP350-405 (SX-100).```	X	X	
	5. Replace the power supply as per MAP350-507 (SX-200) MAP350-403 (SX-100).	X	X	

## SECTION MITL9105/911 0-096-350-NA

$\qquad$
CHART 6-4

Trouble	Check	Isx-100	sx-200	Action
No telephones ring,   but there is dial   tone	1. Ensure that the   PFT LED is not on	X	X	Set all switches as per   paragraph 2.16
2. Check that all   PFT switches are   in normal position	X	X	Paragraph 2.16	

CHART 6-5

Trouble	Check	SX-100	SX-200	Action
Ringing on all   telephones low or   intermittent	Check 90 Vac	X	X	Go to MAP350-603

CHART 6-6

Trouble	Check	$S X-100$	s x -200	Action	
Call cannot be   made within the   system	Is the system in   PFT?	$x$	$x$		Go to System Power test,   Appendix   F.

CHART 6-7

Trouble	Check	$s x-100$	$s x-200$	Action
Shelf 2 dead	Is all power on   shelf 2 present?		x	Go to MAP350-603

CHART 6-8

Trouble	Check	sx-100	sx-200	Action
Apparent radical   power fluctuations	Under heavy (or   light) traffic   conditions system   power remains   unstable	$x$	X	Go to Appendix F

## CHART 6-9

Trouble	Check	sx-100	sx-200	Action		
System cannot be   released from PFT	Reset the PFT   switches. Is the   system returned   to normal?		$x$	$X$		Check fuse on interconnect
:---						
card as per						
MAP350-605 (SX-100)						
MAP350-601 (SX-200).						

CHART 6-10

Trouble	Check	sx-100	sx-200	Action
Reserve battery backup not holding the system up	1. Are all reserve battery backup connections as per Figures 6-2 and 6-3?	X	X	Make connections as shown in Figures 6-2 and 6-I. Give batteries time to charge (24 hours).
	2. Is the battery circuit breaker in the ON position?	X	X	Reset breaker.
	3. Is the battery charging LED lit?	X	X	Go to MAP350-604 (SX-200) MAP350-606 (SX-100).
	4. Are the fuses F1, F2 and F3 good?	X	X	Go to MAP350-605 (SX-200) MAP350-606 (SX-100).
	5. Are the batteries less than 4 years old?	X	X	Replace batteries as per Section MITL9105/91 10-096-200-NA.
	6. Unplug the system AC power cord. Is there an audible click from the charger unit or does the system indicate an "on battery condition" (i.e., Contact Monitor, Section MITL9105/9110-096-105-NAI?	X	X	OOT not properly hooked up. OOT not functioning. Replace charger unit.

7. REMOTE MAINTENANCE, ADMINISTRATION AND TEST SYSTEM

## RMAT System

7.01 The RMAT System was designed to be used by personnel maintenance centers to remotely access systems installed at customer's premises. These personnel may obtain maintenance formation or cause programming changes. The system provides means of rapidly identifying potential system problem areas and allo programming changes to be done without the necessity of visiting $t$ user's premises.
7.02 The facility is provided by:
(a) A Remote Maintenance Administration and Test (RMAT) Syst Controller installed at the Maintenance Center. It consists of SX-IOO/SX-200 hardware with a Generic 290 or 291 RM PROM, and includes a Remote Control - Central (RCC) card a a standard operating console.
(b) A Remote Control - System (RCP) card installed in slot 16 Shelf Unit 1 of each SX-IOO/SX-200 system.
(c) The interconnecting facilities between the RMAT Controller and the RCP-installed systems. This communication's link is in most cases provided by the public switched network, with the RMAT Controller dialing up the required system. Access to each system may be provided by dialing a dedicated number (trunk), or by dialing the listed directory number for the system. A user defined security code within each system provides protection against unauthorized access.

Note: The RCP Card occupies slot 16, which might otherwise have been used for a second console Control card. The system then has a single Supervisor console. if, however, a second Supervisor console is required together with the RMAT facility, then the second console is connected to the maintenance port. Under these conditions certain limitations are imposed such as:

- Shared HOLD positions between the two consoles.
- Shared conference call setting capability.
- No time-out to night service on the second console.
- Audio connection between Supervisor consoles when both are idle.
- Separate console configuration in a tenant installation is not possible.
3.03 Once the RCP card has been accessed the RMAT Controller can perform the following functions at the system:
(a) Duplication by the RMAT Console operator of the system normal Supervisor console functions and displays. (Note: No speech path is available to the RMAT console operator once the RCP is accessed.)
(b) Programming functions for the remote system including extended programming for Multi-Digit Toll Control purposes.
(c) Detection of alarm conditions at the system and the ability to clear alarms, to busy out lines and trunks and perform reset and system disable conditions.
(d) If the RCP is connected as a system extension, the system Supervisor, or any other system extension, has the facility of originating an RMAT call to the RMAT Controller. In addition, if the RCP extension has the COS option "Flash for Supervisor" enabled, the RMAT operator can re-enter into speech mode with the system Supervisor after being in the Remote Administration Mode.
(e) The RMAT Controller can access the RCP card by dialing the RCP access code, and has the capability to change the access code when required.
(f) The RMAT Controller's receiver and trunk cards may be programmed by its console for the type of operation required to access the remote system equipments; local features such as time or date display can also be programmed from the console.
(g) The RMAT Controller equipment includes the capability of displaying and clearing diagnostic registers for its own or for the remote system RCP Card.
7.04 For further information, see Section MITL9 105/9110-098-101-NA and MITL9105/9110-098-301-NA.

[^2]
# APPENDIX A <br> MITEL ACTION PROCEDURES 

## GENERAL

Al. 01 Task-oriented functions in this Appendix are implemented usir MITEL Action Procedures (MAPs). Also there is a brief discu: sion of tools and safety practices.

Al. 02 A MAP is a step-by-step procedure using a flow chart principl written and illustrated where necessary to a level of detail tr allows both experienced and inexperienced personnel to carry out tl tasks detailed. A MAP contains two levels of information as follows:
(a) For experienced personnel, a series of steps (level one) ear numbered ( $n$ ) and annotated with minimal information.
(b) For inexperienced personnel, each step referred to in (a) abol is amplified by a connected series of numbered substeps ( $n$ (level two).

Al. 03 A typical example of a MAP is shown in Figure Al-I, with tr two levels detailed.

MAP SYMBOLS
Al. 04 There are four basic symbol shapes which may be used in MAP, and are defined as follows.

AI. 05 AND Block: Used to indicate a level one step that must I performed. Consists of a square with the word AND centered the block

Al. 06 OR Block: Used to indicate a choice of level one steps, one which must be performed. Consists of a rectangle, with the te centered in the block, and with the word OR appearing between tr alternative operations.

Al. 07 The rectangle is also used to border instructions which imp that the operator must perform a task outside the scope of $t$
MAP. The text is centered in the rectangle.
Al . 08 Decision Block: Used to indicate a decision within the lel one steps which must be made. The symbol is based on ; hexagon with the top and bottom sides extended. Decision text centered in the symbol.

Al. 09 START/FINISH/Jump to Block: Used to indicate the start a finish of a MAP. Also used to indicate "jump to" points with the MAP; for example "go to (n)" or "from (n)" or "return to (n)". Th

## SECTION MITL9105/911 0-096-350-NA



Figure AI-I Typical Map Page
symbol is a rectangle with semicircular ends. Text is centered in the symbol.

## THE OPERATOR'S USE OF MAPS

## Experienced Operator

Al. 10 For the experienced operator to complete a task using a MAP, reference to the sequential short form level one steps is usually all that is necessary. Using Figure AII as an example, the experienced operator would proceed as follows.

Al. 11 At (1), makes a decision based on the information within the block. If the answer is YES the operator must proceed to a different MAP. If the answer is NO the operator is faced with another decision at block (2).

Al. 12 At (2), if the decision is NO there is no requirement to proceed further and the test is abandoned. This naturally results in a FINISH block If the decision is YES the operator proceeds to (3) and (4) in succession; i.e., dials the DID station number and completes the call to the check extension.

Al. 13 The description of the instructions carried out in paragraphs AI. 05 and AI. 06 have assumed that the level of competence of the operator is such that short form level one steps contain sufficient information, and therefore the operator reads only the center column of the MAP, top to bottom of the page.

Inexperienced Operator
Al. 14 If the operator's experience is such that the level one instructions do not contain sufficient information, the level two substeps should be referred to as follows.

Al. 15 Using Figure AI-I as an example the path followed should be:
(a) At (1) and (2) make the decisions called for at these steps as before.
(b) At Step (3) dial the DID station number by performing substeps (3A), (3B) and (3C).

In terms of steps and substeps, the operator follows a decision, and then follows the step and substep paths in the example shown.

TOOLS, TEST EQUIPMENT AND SPECIAL INSTRUCTIONS
Al. 16 Any tools, test equipment or special instructions that the operator requires or needs to know are stated on the first page of each MAP. If the MAP is long, and contains a number of subprocedures, these are listed in synopsis form on the first page.

Al. 17 CAUTION: CAUTION IS NECESSARY, DURING INSTALLATION AND MAINTENANCE OF THE SYSTEM TO AVOID POSSIBLE DAMAGE TO THE SYSTEM ELECTRONICS BY STATIC DISCHARGE. A SIMPLE MEANS OF AVOIDING THE POSSIBILITY OF SUCH DAMAGE, IS THE USE OF A "STATIC PROTECTION WRIST STRAP" AI-I-ACHED TO THE SYSTEM, AS SHOWN BELOW (FIGURE Al-2).


Figure AI -2 Static Protection

## APPENDIX B

SYSTEM OVERVIEW

## GENERAL

B1.01 The SX-IOO/SX-200 is an advanced electronic system empls ing digitally controlled solid-state, space-division switchi with stored program control. The capacities of the system are follows:

- SX-100: 112 ports are available for assignment to lines, trur and additional receivers.
- SX-200: 208 ports are available for assignment to lines, trur and additional receivers.
- Each line requires one port, each CO trunk requires two po and additional receivers require four ports each. E\&M Tie Tru Cards and Transformer Trunk Cards require four ports.
- The maximum possible combination of trunks and lines wh can be accommodated is dependent upon the number of ceivers installed and is illustrated in Figure BI-1.


## Compatibility

81.02 The systems are compatible with:

- Line cards of 1A1/2 telephone key system.
- Standard Dial Pulse and DTMF telephone sets equipped with without message waiting lamps.
- Commonly used step-by-step, crossbar and electronic cen office equipment.


## PHYSICAL OVERVIEW

81.03 The SX-100 Cabinet (Basic Version) is of metal construction a has the following dimensions: height 422 mm (16.62 in.), wi 635 mm (25 in.), and depth 470 mm ( 18.5 in .). The weight of a f equipped system is approximately 31.8 kg ( 70 lb ).

B1.04 The SX-100 Primary Power Supply is mounted to.the right the equipment shelf (total weight $6.75 \mathrm{~kg}(15 \mathrm{lb})$ ) and provis all system power from a 115 Vac ( (or a 220 V adapter), 48 Hz to 64 commercial supply $O R$ from -44 to -56 Vdc supply.
81.05 The SX-200 Equipment Cabinet is of metal construction and has the following dimensions: height 965 mm ( 38 in .), width 600 mm ( 23.5 in .), and depth 700 mm ( 27.5 in .). The weight of a fully equipped system is approximately $131.7 \mathrm{~kg}(290 \mathrm{lb})$.

B1.06 The SX-200 Primary Power Supply is mounted directly on the cabinet back panel, (total weight $31.8 \mathrm{~kg}(70 \mathrm{lb})$ ) and provides all system power from either a 115 Vac , or a $220 \mathrm{Vac}, 44 \mathrm{~Hz}$ - 64 Hz commercial supply, OR a -44 to -56 Vdc supply.
81.07 The SX-IOO/SX-200 Equipment Shelf holds up to 22 printed circuit cards which plug into the shelf backplane. On the rear of the backplane are a number of Amphenol-type plugs providing interconnections between the shelves and external equipment. In addition to the plugs are a number of screw-down terminals, allowing shelf connections to the primary power supply unit. The equipment shelves measure 273 mm ( 10.75 in .) high, 480 mm ( 19 in .) wide, 415 mm (15.375 in.) deep and weigh approximately $12.3 \mathrm{~kg}(27 \mathrm{lb})$ fully equipped. Equipment Shelf 2 (SX-200 only) is identical in construction to Equipment Shelf 1 and holds up to 12 additional line or trunk cards.

B1.08 The Reserve Power Supply in the system provides a -48 Vdc source. The supply consists of a shelf unit containing eight Globe Gel 6200 A batteries providing -48.3 Vdc nominal at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$. A separate temperature-compensated charging unit maintains the correct battery voltage level. The SX-200 reserve battery power supp'( measures 178 mm ( 7 in. ) high, 483 mm ( 19 in .) wide, 381 mm ( 15 in. ) ( deep and weighs $43 \mathrm{~kg}(110 \mathrm{lb})$. The SX-100 reserve battery power supply measures 200.9 mm ( 8.2 in .) high, 635 mm ( 25 in .) wide, 40 mm ( 18.5 in .) deep, and weighs 125 lb . The SX-IOO/SX-200 charging unit measures 127 mm ( 5 in .) wide, 178 mm ( 7 in. ) high, 355 mm ( 14 in .) deep and weighs 6.4 kg ( 14 lb ).

B1.09 The console consists of two major assemblies: an upper and a lower assembly. Each major assembly consists of the minor assemblies which are shown in Figure 3-1 and are described in the following paragraphs. The overall dimensions of the console housing are 366 mm ( 14.40 in .) wide, 239 mm ( 9.40 in .) deep and 160 mm ( 6.30 in.) high.
81.10 Table $\mathrm{Bl}-1$ lists all the tables that comprise the remainder of this Appendix.

SECTION MITL9105／911 0－096－350－NA

TABLE BI－1 TABLES		
Table Number	Table Name	Description
BI－2	SX－1 OO／SX－200 Electrical Characteristics	Lists general electrical characteristics of the SX－ 1 OO／SX－200 system
B1－3	System Feature Limitations	Describes the SX－IOO／SX－200 system general limitations（i．e．，number of callbacks，etc．）
B1－4	Time－Out Information	Lists the time－out information of various sys－ tem features
BI－5	Dial Pulse Limits	Lists all dial pulse information
BI－6	System Tones	Lists all the system tones
BI－7	DTMF Tone Limits	Lists DTMF information
BI－8	System Power	Lists general power supply information
BI－9	Environmental Conditions	Outlines environmental conditions for the SX－1 OO／SX－200 system
BI－10	Supervisory Data	Provides general supervisory data on the system
BI－11	Electrical Characteristics SX－ 1 OO／SX－200 RMAT Controller	Lists all the electrical characteristics SX－1 OO／SX－200 RMAT Controller
BI－12	Electrical Characteristics Remote Control－System （RCP）Card	Lists all the electrical characteristics of the RCP card

TABLE BI-2
SX-1 00/SX-200 ELECTRICAL CHARACTERISTICS

SUPERSET 4 set loop limit	200 ohms
Station Loop Limit	1200 ohms including set
Maximum Number of Ringers per Line	five
Ringing:	$90 \mathrm{VaC}, 20 \mathrm{~Hz}$ - immediate ringing
Standard	1 s on, 3 s off
Special	0.5 s on, -0.5 s off, 0.5 s on, -2.5 s off
Ring Trip	During silent or ringing period
Dial Tone	$350 / 440 \mathrm{~Hz}$, continuous
Transfer Dial Tone	$350 / 440 \mathrm{~Hz}, 3$ bursts of 100 ms , then continuou
Busy Tone	$480 / 620 \mathrm{~Hz}$, interrupted at 60 ipm
Special Busy Tone	440 Hz interrupted at 60 ips
Standard Ringback Tone	$440 / 480 \mathrm{~Hz}, 1 \mathrm{~s}$ on, 3 s off
Special Ringback Tone	$440 / 480 \mathrm{~Hz}, 0.5 \mathrm{~s}$ on, 0.5 s off, 0.5 s on, 2.5 s off
Callback	six rings of standard ringing
Reorder Tone	$480 / 620 \mathrm{~Hz}$, interrupted at 120 ipm
Conference Tone	440 Hz , one burst of 1 s
Camp-On Tone	440 Hz , one or two bursts of 200 ms
Override Tone	440 Hz , one burst of 900 ms followed by a 200 ms burst every 6 s
Crosstalk	75 dB minimum
Insertion Loss':	
Station-to-Station	$5 \mathrm{~dB} \pm 0.5 \mathrm{~dB}$ at 1004 Hz
Station-to-Trunk	$0.5 \mathrm{~dB} \pm 0.3 \mathrm{~dB}$ at 1004 Hz
Trunk-to-Trunk	0.5 dB f0.3 dB at 1004 Hz
Longitudinal Balance	54 dB minimum, 200-3000 Hz
Return Loss	14 dB minimum
Idle Circuit Noise	16 dBrnC maximum
Impulse Noise	No counts over 46 dBrnC
Envelope Delay	$150 \mu \mathrm{~s}$ maximum
System Impedance	600 ohms nominal for lines 600 or 900 ohms nominal for trunks
Traffic Capacity	$7.5 \mathrm{ccs} / \mathrm{line}$ minimum at 100 lines at $\mathrm{P}=0.01$
Primary Power	100-125 V, 47-63 Hz, 4 A maximum
Central Office	
Trunk Loop Limit	1600 ohms
Maximum Distance of	
Console from Equipment	300 m (1000 ft) of 26 AWG cable
Operating Environment	$0^{\prime \prime} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right), 10 \%$ to $90 \%$ Relative Humidity
Maximum number of SUPERSET 4 sets	64


TABLE B1－3   SYSTEM FEATURE LIMITATIONS
Maximum number of simultaneous calls＝ 31 ．
Maximum number of speech paths used by any call $=2$ ．
Maximum number of simultaneous consultations $=15$.
Maximum number of simultaneous add－on（3－way）calls $=30$.
Maximum number of simultaneous station－controlled conference calls $=30$.
Maximum number of calls that can simultaneously be camped on to an extension， trunk group or hunt group $=30$ ．
Maximum number of simultaneous callbacks that can be enabled $=32$.
Maximum number of simultaneous call forwards that can be enabled $=208$（SX－200）； 112 （SX－100）．
Maximum number of simultaneous＂dial 0＂calls＝ 31.
Maximum number of hunting groups $=12$.
Maximum number of calls that can be simultaneously connected to music on hold $\mathbf{= 3 1}$ ．
Maximum number of stations in a station hunting group＝ 208 （SX－200）； 112 （SX－100）．
Maximum number of stations in a call pickup group＝ 208 （SX－200）； 112 （SX－100）．
Maximum number of dial call pickup groups $=30$ ．   Maximum number of trunks assignable to night stations＝ 100 （SX－200）； 52 （SX－100）．
Maximum number of trunk groups $=12$.
Maximum number of calls that can override a given extension $=1$ ．
Maximum number of calls that can be simultaneously parked $=31$ ．
Maximum number＂of simultaneous meet－me conferences $=1$.
Maximum number of simultaneous Attendant－controlled conferences $=1$ ． Maximum number of，calls that can be simultaneously held by one Attendant $=4$.
Maximum number of LDNs that can be identified at the Attendant console $=4$ ．
Maximum number of simultaneously ringing Wake－Ups $=10$.
System numbering schemes may be 1－，2－，3－or 4－digit or a combination of 1 －，2－， 3 －and 4 －digit，as long as there are no conflicts in the first digits．

TABLE B1-4
TIME-OUT INFORMATION

Supervisor-Timed Recall (Don't Answer)	$10 \mathrm{~s}, 20 \mathrm{~s}, 30 \mathrm{~s}$, or 40 s
Supervisor-Timed Recall (Camp-On)	$20 \mathrm{~s}, 30 \mathrm{~s}, 40 \mathrm{~s}$
Suoervisor-Timed Recall (Hold)	20 s .30 s .0 or 40 s
Automatic Night Switching	$20 \mathrm{~s}, 30 \mathrm{~s}$, or 40 s
Automatic Wake-Up Ringing	six rings
Dial Tone Time-Out	15 s
Interdigit Time-Out	15 s lines, 10 s trunks, or 15 s trunks (System Option 172)
Lockout Time-Out	45 s
Callback Clear Time-Out	8 hours
Callback - Don't Answer Reset	six rings
Call Park Recall	2, 3, or 4 minutes
Call Hold Recall	2, 3, or 4 minutes
Call Forwarding - Don't Answer Time-Out	$10 \mathrm{~s}, 20 \mathrm{~s}, 30 \mathrm{~s}$, or 40 s
Switchhook Flash	minimum $250 \mathrm{~ms}, 700 \mathrm{~ms}, 900 \mathrm{~ms}, 1100 \mathrm{~ms}$ or maximum 1500 ms
Ringing Time-Out	5 minutes

TABLE BI-5
DIAL PULSE LIMITS

Parameter	Min.	Max.
(Accept)		
Pulse Rate (pps)		
Break Duration (percent)	8.0	12.0
Break Interval (ms)	50.0	80.0
Make Interval (ms)	52.7	80.0
Interdinit Time (ms)	32.7	52.5
(Generate)	300.0	
$\bullet$ Pulse Rate (pps)		
$\bullet$ Break Interval (percent)		
$\bullet$ Interdigit Time (ms)	9	11


	TABLE BI-6 SYSTEM TONES
Dial Tone	$350 / 440 \mathrm{~Hz}$, continuous, -13 dBm
Transfer Dial Tone	3501440 Hz , three bursts 100 ms off followed by continuous $350 / 440 \mathrm{~Hz},-13 \mathrm{dBm}$
Busy Tone	4801620 Hz , interrupted at $60 \mathrm{ipm},-24 \mathrm{dBm}$
Camp-On Busy Tone	440 Hz at $60 \mathrm{ips},-13 \mathrm{dBm}$
Ringback Tone	$440 / 480 \mathrm{~Hz}, 1$ s on, 3 s off, -19 dBm
Reorder Tone	$480 / 620 \mathrm{~Hz}$, interrupted at $120 \mathrm{ipm},-24 \mathrm{dBm}$
Camp-On Tone	440 Hz , one burst of $200 \mathrm{~ms},-16 \mathrm{dBm}$
Override Tone	440 Hz , one burst of 800 ms followed by a 200 ms burst everv $6 \mathrm{~s},-16 \mathrm{dBm}$
Supervisor Error Tone	440 Hz at 10 ips for $400 \mathrm{~ms},-16 \mathrm{dBm}$
Conferencing Tone	440 Hz , one burst of $1 \mathrm{~s},-16 \mathrm{dBm}$
Miscellaneous Tone	$440 \mathrm{~Hz},-16 \mathrm{dBm}$
DTMF Dialing Conditions - $\quad$ Frequency Deviation	+1 percent
- Duration	Greater than 40 ms
- Interdigit Time.	Greater than 40 ms
- Level, Low Group	Greater than -10 dBm
- Level, High Group	Greater than -8 dBm
- Level, DTMF Signal	Greater than +2 dBm
- Level, Third Frequency	Less than -40 dB
- Twist	Less than 4 dB

TABLE BI-7
DTMF TONE LIMITS

Low	Frequency$(\mathrm{Hz})$	High Frequency (Hz)			Frequency deviation: $\pm 1 \%$   Signal interval (2 frequency): 40 ms (minimum)   Per frequency, minimum level: -17 dBm on line circuit   Twist, maximum (at -10 dBm ): +4 to -8 dBm   (High f relative to low f)
		1209	1336	1477	
	697	1	2	3	
	770	4	5	6	
	852	7 $*$	8	9	
	941		0	\#	

Notes: 1. Tolerance of call progress tone levels is $\pm 1.15 \mathrm{dBm}$.
2. Individual tones of any compound tone are within 1 dB of each other.
3. Tolerance of individual tones are $\pm 1 \%$ of the frequency stated.

$$
\text { 1. }=
$$

TABLE EI-8 SYSTEM POWER		
Characteristic	sx-100	sx-200
AC Power Supplies		
Input Voltage	115 Vac or 230 Vac, $-20 \%$ to + 10 \%	115 Vac or 230 Vac, -20 \% to $+10 \%$
Frequency	44 Hz to 64 Hz	44 Hz to 64 Hz
Holdover Time	Momentary interruptions in commercial power up to 250 ms duration	Momentary interruptions in commercial power up to 250 ms duration
Input Current	2.5 A maximum at 115 Vac	4 A maximum at 115 Vac
Talk Battery Noise	Does not exceed 28 dBrnc	Does not exceed 28 dBrnc
Reserve Battery Supply		
Voltage Range Holdover Time Battery Life Time	48.3 V to 52 V 2 hours minimum 4 to 6 yrs	48.3 V to 52 V 2 hours minimum 4 to 6 yrs
RAM/COS Battery Pack		
Holdover Time Battery Life Time	4 weeks   4 years	4 weeks 4 years
Ringing Supply		
Output Voltage Frequency	$\begin{aligned} & 90 \mathrm{Vac} \pm 10 \% \\ & 20 \mathrm{~Hz} \pm 1 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 90 \mathrm{Vac} \pm 10 \% \\ & 20 \mathrm{~Hz} \pm 1 \mathrm{~Hz} \end{aligned}$



Note: For the SUPERSET 4 set, see Appendix H.

$$
\because=
$$

TABLE BI-10
SUPERVISORY DATA

- The system responds to hookswitch flashes with a duration of between 200 ms and a programmable maximum time ( $0.7,0.9,1.1$ or 1.5 s ) in order to activate the Transfer/Consultation Hold/Add-On features.
- An open tip lead condition of 500 ms (optional 50 ms ) or more on a CO trunk will release the system connection.
- Momentary open loop conditions of up to 350 ms (optional 40 ms ) generated by the Central Office on outgoing system calls, will not release system calls.
- System station hookswitch flashes will not be repeated towards the Central Office.
- System station on-hook conditions will release a trunk connection after the selected flash time.
- Station Loop. The station loop range, including the station apparatus can be up to a maximum of 1200 ohms.
- The SUPERSET 4 set loop limit $=\mathbf{2 0 0}$ ohms.
- Supervisor Console Range. The Supervisor console can be remotely connected from the cabinet..up to a maximum of $300 \mathrm{~m}(1000 \mathrm{ft})$ with 26 AWG cable.
- CO Trunk Group. The system will operate with CO trunks up to a maximum of 1600 ohms loop resistance.
- CO Trunk Seizure. The system nominal seizure resistance is 270 ohms at 30 mA .
- CO Trunk Resistance. In the idle state, the resistance towards the system from the trunk; circuit is 20 kohms tip to ground and 20 kohms ring to ground for ground starts, and not less than 10 Mohms for loop start trunks.
- Tie Trunk Resistance. The maximum resistance towards the tie trunk is:
- 2 kohms for Loop
- 3 kohms for E\&M.

TABLE BI-11

## ELECTRICAL CHARACTERISTICS

SX-1 OO/SX-200 RMATS CONTROLLER

Modem Signaling Parameters:	
Operation Mode	Full or half duplex over 2-wire public switched network, originate mode
Data Rate	300 baud asynchronous
Transmit Tones	Mark 1270 Hz; Space 1070 Hz
Transmit Levels	Nominal - 10 dBm with automatic gain to $-3 \mathrm{dBm}, 0 \mathrm{dBm}$, or +0.4 dBm for loop attenuation compensation
Receive Tones	Mark 2225 Hz; Space 2025 Hz
Receive Sensitivity	-4 to -45 dBm
Line Interface:	CO Trunk, loop/ground start (rotary dial or DTMF signaling) (see Note)
Primary Power Supply:	
SX-100 Cabinet	90 to 125 Vac (optionally 200 to 250 Vac ); 44 to 64 Hz ; 2 A
SX-200 Cabinet	90 to 125 Vac or 185 to $250 \mathrm{Vac} ; 44$ to $64 \mathrm{~Hz}, 4 \mathrm{~A}$

Note: See Section MITL9105/91 10-096-210-NA for CO Trunk Card full capabilities.

[^3]TABLE B1-12
ELECTRICAL CHARACTERISTICS
REMOTE CONTROL-SYSTEM (RCP) CARD

Modem Signaling Parameters:	
Operation Mode	Full or half duplex over 2 -wire public switched network with automatic answer feature
Data Rate	300 baud asynchronous
Transmit Tones	Mark 2225 Hz; Space 2025 Hz
Transmit Level	Nominal -10 dBm with automatic gain to $-3 \mathrm{dBm}, 0 \mathrm{dBm}$ or +0.4 dBm for loop attenuation compensation
Receive Tones	Mark 1270 Hz; Space 1070 Hz
Receive Sensitivity	-4 to -45 dBm
Line Interface Parameters:	
On-hook DC Resistance	Minimum 10 meg ohms
On-hook Impedance	10 kohms in series with $1 \mu \mathrm{~F}$
Ringing	Minimum 30 Vrms at 20 Hz
Off-hook DC Resistance	260 ohms at 20 mA (line reversal ignored)
Off-hook Impedance	600 ohms in series with $2 \mu \mathrm{~F}$
Return Loss	Minimum 14 dB at 200 Hz   25 dB at 1 kHz    35 dB at 3 kHz
Common Mode Rejection	60 Vrms maximum at 60 Hz
Longitudinal Balance	Minimum 63 dB at 1 kHz 56 dB at 13 kHz
Transient Protection	Withstands 1000 V or $10 / 1000 \mu \mathrm{~s}$ and 22 ohms source resistance between Tip and ground or Ring and ground
Power Supply and Digital Interface Parameters:	Compatible with Console Control Card (MITEL PN91 10-006-000-NA)

## APPENDIX C <br> SYSTEM CABLING

Cabling and	Cross-Connections
	General
	Cl. 01 This Appendix details the cabling and cross-connections required when installing the SX-IOO/SX-200 system.
	Telephone Set and Trunk Cabling
	CI. 02 Telephone set and trunk cabling terminates on the building cross-connection terminal in the normal manner. The cabling requirements and limits for stations and consoles are shown in Figure $\mathrm{Cl}-\mathrm{I}(\mathrm{a})$ and (b).
	Cable Terminations, SX-100
	Cl. 03 All interconnecting cables must be terminated in accordance with Tables $\mathrm{Cl}-\mathrm{I}, \mathrm{Cl}-2$ and Figure $\mathrm{Cl}-2$.
	Cable Terminations, SX-200

Cl. 04 All interconnecting cables must be terminated in accordance with Figure $\mathrm{Cl}-3$ and Tables $\mathrm{Cl}-\mathrm{I}, \mathrm{Cl}-2, \mathrm{Cl}-3$ and $\mathrm{Cl}-4$. In addition, if Shelf 2 is installed, the interconnecting cables listed in Table $\mathrm{Cl}-4$ must be terminated.

## Cross-Connections

Cl. 05 Jumpers should be run using Z-type 24 AWG cross-connecting cables or equivalent.
Cl. 06 Connection between the equipment cabinet, cross-connect field, stations, trunks and consoles should be made using 26 AWG connector-ended cable in accordance with Tables $\mathrm{Cl}-\mathrm{I}$ through CI-4.
CI. 07 Cabling connections between Shelf 1, the interconnect board and cross-connect field are shown in Figures $\mathrm{Cl}-3$ and $\mathrm{Cl}-7$.
Cl. 08 Figures $\mathrm{Cl}-4$ and $\mathrm{Cl}-5$ illustrate typical block and -wiring did-' grams for a power fail transfer circuit. Figure $\mathrm{Cl}-6$ illustrates typical night bell wiring connections and Figure $\mathrm{Cl}-7$ shows the connections for music and PA requirements.


NOTE：STATION LOOP LIMIT 1200 ohms（INCLUDING STATION SET）：SUPERSET 4 LOOP LIMIT $\boldsymbol{\mp} 200$ OHMS
（A）STATION CABLING \＆LIMITS


NOTE：CABLING LIMIT $205 \mathrm{~m}(1000 \mathrm{ft})=26$ AWG MINIMUM CABLE CONSOLE TO EQUIPMENT CABINET．
（B）SUPERVISOR CONSOLE CABLING \＆LIMITS
1．＝

Figure $\mathrm{Cl}-\mathrm{I}$ Station and Console Cabling Requirements
Cl. 09 When backplane translator boards are used with the lines ar trunk circuits, different terminal connections result. In this cas the cabling arrangements must conform to the termination conne tions shown in Figure $\mathrm{Cl}-8$ and Table $\mathrm{Cl}-6$ of this Appendix.
Cl. 10 Figures $\mathrm{C} 1-9, \mathrm{Cl}-10$ and $\mathrm{Cl}-11$ are in-depth wiring explan tions. These figures outline the card position in relation to specific Amphenol-type connector to the cross-connect frame.

## SECTION MITL9105/911 0-096-350-NA



BOARD	CONNECTOR NO.	DESTINATION	BOARD	CONNECTOR NO.	DESTINATION
SHELF   BACKPLANE	$\begin{aligned} & \text { P1 } \\ & \text { P2 } \\ & \text { P3 } \\ & \text { P4 } \\ & \text { P5 } \\ & \text { P6 } \end{aligned}$	$\mathrm{X}=\mathrm{CONNECT}$   X = CONNECT   X = CONNECT   $\mathrm{X}=\mathrm{CONNECT}$   P17   P16	INTERCONNECT	$J 13$   J14 $J 15$ P16	MAINTENANCE CONSOLE   SUPERVISOR CONSOLE 2 SUPERVISOR CONSOLE 1 P6
NOTE:	AU PLUGS AND CONNECTORS MCEPT AS NOTED ARE STANDARD 25PAIR (AMPHENOL-TYPE). THE MALE AND FEMALE DESIGNATORS REFER TO THE CONNECTORS MOUNTED ON THE EQUIPMENT, NOT TO THE CABLE CONNECTORS.			P18   P19   P20   J302   P301	X = CONNECT   X - CONNECT   X = CONNECT TO MODEM LOCAL TERMINAL MAINTENANCE PANEL

Figure CI -2 SX-100 Connector Locations

SHELF 1 EXTERNAL PLUG AND JACK CONNECTIONS

Pin	Pair Color	Equipment Numbers Lines	Lead Designation		Equipment Numbers Trunks	Lea	Designation, Trunks		Card Positions
					CD	DID/TIE	E\& M *		


$\begin{array}{r} 26 \\ 1 \\ \hline \end{array}$	$\begin{aligned} & W-B L \\ & B L-W \end{aligned}$	001	T1 reserved for RI test line	002**	$\begin{aligned} & \text { T1 } \\ & \text { R1 } \end{aligned}$	$\begin{aligned} & \text { T1 } \\ & \text { R1 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { T1 } \\ & \text { R1 } \end{aligned}$	
27	W-O	002	T2		XT2		TR1	
2	O-W		R2		XT1		RR1	1
28	W-G	003	T3	004	T 2		El	
3	G-W		R3		R2		MI	
29	W-BR	004	T4					
4	BR-W		R4					
30	W-S	009	T1	010**	T1	T1	T1	
5	S-W		R1		R1	R1	R1	
31	R-BL	010	T2		XT2		TR1	
6	BL-R		R2		XT1		RR1	2
32	R-O	011	T3	012	T2		E1	
7	O-R		R3		R2		M1	
33	R-G	012	T4					
8	G-R		R4					
34	R-BR	017	T1	018**	T1	T1	T1	
9	BR-R		R1		R1	R1	R1	
35	R-S	018	T2		XT2		TR1	
10	S-R		R2		XT1		RR1	
36	BK-BL	019	T3	020	T2		E1	3
11	BL-BK		R3		R2		M1	
37	BK-0	020	T4					
12	O-BK		R4					
38	BK-G	025	T1	026**	T1	T1	T1	
13	G-BK		R1		R1	R1	R1	
39	BK-BR	026	T2		XT2		TR1	
14	BR-BK		R2		XT1		RR1	
40	BK-S	027	T3	028	T		F1	$\Delta$
15	S-BK		R3		R2		M1	
41	Y-BL	028	T4					
16	BL-Y		R4					
42	Y-O	033	T1	034**	T1	T1	T1	
17	O-Y		R1		R1	R1	R1	
43	Y-G	034	T2		XT2		TR1	
18	G-Y		R2		XT1		RR1	
44	Y-BR	035	T3	036	T2		E1	5
19	BR-Y		R3		R2		M1	
45	Y-S	036	T4					
20	S-Y		R4					
46	V-BL	041	T1	042""	11	T1	TI	
21			R1		RI	R1	R1	
47	V-0 BL-V	042	T2		XT2		TR1	
22	o-v		R2		XT1		RR1	
48	V-G	043	T3	044	T2		El	6
23	G-V		R 3		R2		M I	
49	V-BR	044	T4					
24	BR-V		R4					
50	v -s		SPARE		SPARE			
25	S-V		SPARE		SPARE			

* For 2-Wire E\&M Trunk operation DO NOT connect RR and TR leads.
** Trunk Equipment Number 2 for Trunk Card only.

TABLE CI-I (CONT'D)
SHELF 1 EXTERNAL PLUG AND JACK CONNECTIONS

Pin	Pair Color	Equipment Numbers Lines	Lead Designation	Equipment Numbers Trunks	Lead	Designation	Trunks	Card Positions
					co	DID/TIE	E\&M*	
PLUG -P2 (Connects to Cross-Connect Field)								
26 1 27	$\begin{aligned} & W-B L \\ & B L-W \end{aligned}$	005	$\begin{array}{r} \mathrm{T} 5 \\ \mathrm{R} 5 \\ \hline \end{array}$	006**	$\begin{array}{r} \text { T3 } \\ \text { R3 } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{R} 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{R} 2 \\ & \hline \end{aligned}$	
27 2	$W-O$ $0-W$	006	$\begin{aligned} & \text { T6 } \\ & \text { R } 6 \\ & \hline \end{aligned}$		$\begin{array}{r} \text { XT4 } \\ \times T 3 \\ \hline \end{array}$		$\begin{aligned} & \text { TR2 } \\ & \text { RR2 } \end{aligned}$	1
28 3	W-G $G-W$	007	$\begin{aligned} & \text { T7 } \\ & \text { R7 } \\ & \hline \end{aligned}$	008	$\begin{aligned} & \text { T4 } \\ & \text { R4 } \end{aligned}$		$\begin{aligned} & \text { E2 } \\ & \text { M2 } \end{aligned}$	
$4{ }^{4} 29$	$\begin{aligned} & \bar{W}-B R \\ & B R-W \end{aligned}$	008	$\begin{aligned} & \text { T8 } \\ & \text { R8 } \end{aligned}$					
$\begin{array}{r}30 \\ -5 \\ \hline\end{array}$	$W-S$ $S-W$	013	$\begin{array}{r} T 5 \\ 85 \\ \hline \end{array}$	014**	$\begin{aligned} & \text { T3 } \\ & \text { R3 } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{R} 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{R2} \end{aligned}$	
31 6	$\begin{aligned} & R-B L \\ & B L-R \end{aligned}$	014	$\begin{aligned} & \text { T6 } \\ & \text { R6 } \end{aligned}$		$\begin{aligned} & \text { XT4 } \\ & \text { XT3 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { TR2 } \\ & \text { RR2 } \\ & \hline \end{aligned}$	2
32 7	$R-O$ $O-R$	015	$\begin{aligned} & \text { T7 } \\ & \text { R7 } \end{aligned}$	016	$\begin{aligned} & \text { T4 } \\ & \text { R4 } \end{aligned}$		$\begin{aligned} & E 2 \\ & M 2 \end{aligned}$	2
$\begin{array}{\|l\|} \hline \\ \hline \end{array}$	$\begin{aligned} & R-G \\ & G-R \end{aligned}$	016	$\begin{aligned} & \text { T8 } \\ & \text { R8 } \end{aligned}$					
34   9   35	R-BR $B R-R$	021	$\begin{array}{r} \text { T5 } \\ \text { R5 } \end{array}$	022**	$\begin{aligned} & \text { T3 } \\ & \text { R3 } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{R} 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { T2 } \\ & \text { R2 } \end{aligned}$	
35 10 36	$R-S$ $S-R$	022	T6   R6		$\begin{array}{r} \text { XT4 } \\ \text { XT3 } \\ \hline \end{array}$		$\begin{aligned} & \text { TR2 } \\ & \text { RR2 } \end{aligned}$	
36   11   37	$B K-B L$ $B L-B K$ $B K-O$	023	$\begin{aligned} & \text { T7 } \\ & \text { R7 } \\ & \hline \end{aligned}$	024	$\begin{array}{r} \mathrm{T} 4 \\ \mathrm{R} 4 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{E} 2 \\ & \mathrm{M} 2 \\ & \hline \end{aligned}$	3
37   12   38	$\begin{aligned} & B K-O \\ & O-B K \end{aligned}$	024	$\begin{aligned} & \text { T8 } \\ & \text { R8 } \\ & \hline \end{aligned}$					
38 13 39	$\begin{aligned} & \mathrm{BK}-\mathrm{G} \\ & \mathrm{G}-\mathrm{BK} \end{aligned}$	029	$\begin{aligned} & \text { T5 } \\ & \text { R5 } \\ & \hline \end{aligned}$	030**	$\begin{array}{r} \text { T3 } \\ \text { R3 } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{R} 2 \\ & \hline \end{aligned}$	$\begin{array}{r} \mathrm{T} 2 \\ \mathrm{R} 2 \\ \hline \end{array}$	
39 14 40	$\begin{aligned} & \mathrm{BK}-\mathrm{BR} \\ & \mathrm{BR}-\mathrm{BK} \end{aligned}$	030	$\begin{aligned} & \text { T6 } \\ & \text { R6 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { XT4 } \\ & \text { XT3 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { TR2 } \\ & \text { RR2 } \\ & \hline \end{aligned}$	
40   15	$\begin{aligned} & B K-S \\ & S-B K \end{aligned}$	031	$\begin{aligned} & \mathrm{T7} \\ & \mathrm{R7} \\ & \hline \end{aligned}$	032	$\begin{gathered} \text { A } 4 \\ \text { R4 } \\ \hline \end{gathered}$		$\begin{aligned} & \text { KRL } \\ & \text { E22 } \\ & \hline \end{aligned}$	4
41   16   42	$\begin{aligned} & Y-B L \\ & B L-Y \end{aligned}$	032	$\begin{aligned} & \text { T8 } \\ & \text { R8 } \\ & \hline \end{aligned}$					
$\begin{array}{r}42 \\ 17 \\ \hline 43\end{array}$	Y-O $\mathrm{O}-\mathrm{Y}$	037	$\begin{aligned} & \text { T5 } \\ & \text { R5 } \\ & \hline \end{aligned}$	$038^{* *}$	$\begin{array}{r} \mathrm{T} 3 \\ \mathrm{R} 3 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{R} 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{R} 2 \\ & \hline \end{aligned}$	
48   18   44	$Y-G$   $G-Y$   $Y-B R$	038	$\begin{aligned} & \text { T6 } \\ & \text { R6 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { XT4 } \\ & \text { XT3 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { RL2 } \\ & \hline \text { RR2 } \end{aligned}$	
44 19 45	$Y-B R$ $B R-Y$	039	T7   R7   78	040	$\begin{aligned} & \text { T4 } \\ & \text { R4 } \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{En} 2 \\ & \mathrm{M} 2 \\ & \hline \end{aligned}$	5
20	$\begin{aligned} & Y-S \\ & S-Y \\ & \hline \end{aligned}$	040	$\begin{aligned} & 78 \\ & T 8 \\ & \hline \end{aligned}$					
21 47	$V-B L$ $B L-V$	045	$\begin{aligned} & \text { T5 } \\ & \text { R5 } \\ & \hline \end{aligned}$	046**	$\begin{array}{r} \mathrm{T} 3 \\ \text { R3 } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{R} 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{R} 2 \\ & \hline \end{aligned}$	
22	$\begin{aligned} & V-O \\ & 0-V \end{aligned}$	046	$\begin{aligned} & \text { T6 } \\ & \text { R6 } \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{XT4} \\ & \text { XT3 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { TR2 } \\ & \text { RR2 } \end{aligned}$	
$249^{3}$	$\begin{aligned} & V-G \\ & G-V \end{aligned}$	047	$\begin{aligned} & \text { T7 } \\ & \text { R7 } \\ & \hline \end{aligned}$	048	$\begin{aligned} & \text { T4 } \\ & \text { R4 } \end{aligned}$		$\begin{aligned} & E 2 \\ & M 2 \end{aligned}$	6
${ }^{2} 504$	$\begin{aligned} & \mathrm{V}-\mathrm{BR} \\ & \mathrm{BR}-\mathrm{V} \end{aligned}$	048	$\begin{aligned} & \text { T8 } \\ & \text { R8 } \\ & \hline \end{aligned}$					
25	$\begin{aligned} & V-S \\ & S-V \end{aligned}$		SPARE SPARE		SPARE SPARE			

* For 2-Wire E\&M Trunk operation DO NOT connect RR and TR leads.
** Trunk Equipment Number 2 for Trunk Card only.
-.

TABLE CI-I (CONT'D)
SHELF 1 EXTERNAL PLUG AND JACK CONNECTIONS

Pin	Pair Color	Equipment Numbers Lines	Lead Designation	Equipment Numbers Trunks	Lead	Designation,	Trunks	Card Positions
					co	DID/TIE	E \& M *	
PLUG P3 (Connects to Cross-Connect Field)								
26 1	W-BL BL-W	049	T1 R1 1	050**	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{R} 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{R} 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { T1 } \end{aligned}$	
27	W-O	050	T2		XT2		TR1	
2	O-W		R2		XT1		RR1	7
28	W-G	051	T3	052	T2		E1	
3	G-W		R3		R2		M1	
29	W-BR	052	T4					
4	BR-W		R4					
30	W-S	057	T1	058**	T1	T1	T1	
5	S-W		R1		R1	R1	R1	
31	R-BL	058	T2		XT2		TR1	
6	BL-R		R2		XT1		RR1	8
32	R-0	058	T3	060	T2		E1	
7	O-R		R3		R2		M1	
33	R-G	060	T4					
8	G-R		R4					
34	R-BR	065	T1	066**	T1	11	T1	
9	BR-R		R1		R1	R1	R1	
35	R-S	066	T2		XT2		TR1	
10	S-R		R2		XT1		RR1	
36	BK-BL	067	T3	068	T2		E1	9
11	BL-BK		R3		R2		M1	
37	BK-O	068	T4					
12	O-BK		R4					
38	BK-G	073	T1	074**	T1	T1	T1	
13	G-BK		R1		R1	R1	R1	
39	BK-BR	074	T2		XT2		TR1	
14	BR-BK		R2		XT1		RR1	
40	BK-S	075	T3	076	T2		E1	10
15	S-BK		R3		R2		M. 1	
41	Y-BL	076	T4					
16	BL-Y		R4					
42	Y-O	081	T1	082**	T1			
17	O-Y		R1		R1	R1	R1	
43	Y-G	082	T2		XT2			
18	G-Y		R2		XT1		RR1	
44	Y-BR	083	T3	084				11
19	BR-Y		R3		R2		M1	
45	Y-S	084	T4					
20	S-Y		R4					
Q6	VFLBK	089	R1	090**	R1	R1	R1	
$22^{47}$	v - V	090	T2				TR1	
	o-v		R2		XT1		RR1	
4823	V-G	091	T3	092	T2		El	
								See Note
23	G-V				R2		MI	
49	V-BR	092	T4					
24	BR-V		R4					
50	v-s		SPARE		SPARE			
25	s-v		SPARE		SPARE			

Note: Position 12 can be used for lines, trunks, or receiver \#4 card.

* For 2-Wire E\&M Trunk operation DO NOT connect RR and TR leads.
** Trunk Equipment Number 2 for Trunk Card only.


Note: Position 12 can be used for lines, trunks or receiver card \#4.

* For 2-Wire E\&M Trunk operation DO NOT connect RR and TR leads.
** Trunk Equipment Number 2 for Trunk Card only.

[^4]TABLE CI-I (CONT'D)
SHELF 1 EXTERNAL PLUG AND JACK CONNECTIONS


Note: Positions 14 and 13 can be used for lines or trunks, or for receiver cards \#2 and \#3, respectively.

* For 2-Wire E\&M Trunk operation DO NOT connect RR and TR leads.
** Trunk Equipment Number 2 for Trunk Card only.

TABLE CI-I (CONT'D)
SHELF 1 EXTERNAL PLUG AND JACK CONNECTIONS


Note: Positions 14 and 13 can be used for lines or trunks, or for receiver cards \#2 and \#3, respectively.

* For 2-Wire E\&M Trunk operation DO NOT connect RR and TR leads.
** Trunk Equipment Number 2 for Trunk Card only.

Cl-2
INTERCONNECT BOARD PLUG AND JACK CONNECTIONS



1. =

TABLE CI-2 (CONT'D)
SHELF 2 (SX-200 ONLY) EXTERNAL PLUG AND JACK CONNECTIONS

| Pin | Pair <br> Color | Equipment <br> Numbers <br> Lines | Trunks | Equipment <br> Numbers <br> Trunks | Lead Designation, Trunks |  |  | Card <br> Positions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

## PLUG P7 (Connects to Cross-Connect Field)

$\begin{array}{r} 26 \\ 1 \\ \hline \end{array}$	$\begin{aligned} & W-B L \\ & B L-W \end{aligned}$	161	$\begin{aligned} & \text { T1 } \\ & \text { R1 } \\ & \hline \end{aligned}$	162**	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{R} 1 \end{aligned}$	$\begin{aligned} & \text { T1 } \\ & \text { R1 } \end{aligned}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{R} 1 \end{aligned}$	
27	W-0	162	T2		XT2		TR1	
2	O-W		R2		XT1		RR1	1
28	W-G	163	T3	164	T2		E1	
3	G-W		R3		R2		M1	
29	W-BR	164	T4					
4	BR-W		R4					
30	W-S	169	T1	$170^{* *}$	T1	T1	T1	
5	S-W		R1		R1	R1	R1	
31	R-BL	170	T2		XT2		TR1	
6	BL-R		R2		XT1		RR1	2
32	R-0	171	T3	172	T2		E1	
7	O-R		R3		R2		M1	
33	R-G	172	T4					
8	G-R		R4					
34	R-BR	177	T1	178**	T1	71	T1	
9	BR-R		R1		R1	R1	R1	
35	R-S	178	T2		XT2		TR1	
10	S-R		R2		XT1		RR1	
36	BK-BL	179	T3	180	T2		E1	3
11	BL-BK		R3		R2		M1	
37	BK-O	180	T4					
12	O-BK		R4					
38	BK-G	185	T1	186**	T1	T1	T1	
13	G-BK		R1		R1	R1	R1	
39	BK-BR	186	T2		XT2		TR1	
14	BR-BK		R2		XT1		RR1	
40	BK-S	187	T3	188	T2			4
15	S-BK		R3		R2		M1	
41	Y-BL	188	T4					
16	BL-Y		R4					
42	Y-O	193	T1	194**				
17	O-Y		R1		R1	R1	R1	
43	Y-G	194	T2					
18	G-Y		R2		XT1		RR1	
44	Y-BR	195	T3	196	T2		E1	5
19	BR-Y		R3		R2		M1	
45	Y-S	196	T4					
20	S-Y		R4					
46	$V-B L$	201	T1	202**	T1		T1	
21	BL-V		R1		R1	R1	R1	
47	V-O	202	T2		XT2		TR1	
22	O-V		R2		XT1		RR1	
48	V-G	203	T3	204	T2		E1	6
23	G-V		R3		R2		M1	6
49	$V-\mathrm{BR}$	204	T4					
24	BR-V		R4					
50	V -S		SPARE		SPARE			
25	S-V		SPARE		SPARE			-

** Trunk Equipment Number 2 for Trunk Card only.

TABLE Cl-2 (CONT'D)
SHELF 2 (SX-200 ONLY) EXTERNAL PLUG AND JACK CONNECTIONS

Pin	Pair Color	Equipment Numbers Lines	Lead Designation	Equipment Numbers Trunks	Lead	Designation,	Trunks	Card Positions
					CD	DID/TIE	E\&M*	
PLUG P8 (Connects to Cross-Connect Field)								
26 1	$W-B L$ $B L-W$	165	$\begin{aligned} & \text { T5 } \\ & \text { R5 } \end{aligned}$	166**	$\begin{aligned} & \text { T3 } \\ & \text { R3 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { T2 } \\ & \text { R2 } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{R} 2 \\ & \hline \end{aligned}$	
27 2	W-O $0-W$	166	T6		XT4		TR2	
28	W-G	167	T7	168	XT3		RR2	1
3	G-W		R7		R4		M2	
29	W-BR	168	T8					
4	BR-W		R8					
30	W-S	173	T5	174**	T3	T2	T2	
5	S-W		R5		R3	R2	R2	
31	R-BL	174	T6		XT4		TR2	
6	BL-R		R6		XT3		RR2	2
32	R-O	175	T7	176	T4		E2	
7	O-R		R7		R4		M2	
33	R-G	176	T8					
8	G-R		R8					
34	R-BR	181	T5	182**	T3	T2	T2	
9	BR-R		R5		R3	R2	R2	
35	R-S	182	T6		XT4		TR2	
10	S-R		R6		XT3		RR2	
36	BK-BL	183	T7	184	T4		E2	3
11	BL-BK		R7		R4		M2	
37	BK-O	18.4	T8					
12	O-BK		R8					
38	BK-G	189	T5	190**	T3	T2	T2	
13	G-BK		R5		R3	R2	R2	
39	BK-BR	190	T6		XT4		TR2	
14	BR-BK		R6		XT3		RR2	
40	BK-S	191	T7	192	T4		E2	4
15	S-BK		R7		R4		M2	
41	$Y$ Y-BL	192	T8					
16	BL-Y		R8					
42	Y-O	197	T5	$198^{\text {* }}$	T3	T2	T2	
17	O-Y		R5		R3	R2	R2	
43	Y-G	198	T6		XT4		TR2	
18	G-Y		R6		XT3		RR2	
44	Y-BR	199	T7	200	T4		E2	5
19	BR-Y		R7		R4		M2	
45	$Y-S$	200	T8					
20	S-Y		T8					
46	V-BL	205	T5	206**	T3	T2	T2	
21	BL-V		R5		R3	R2	R2	
47	V-O	206	T6		XT4		TR2	
22	O-V		R6		XT3		RR2	
48	V-G	207	T7	208	T4		E2	6
23	G-V		R7		R4		M2	
4	V-BR-V	208	R8		$\cdots$			
50	v-s		SPARE		SPARE			
25	s-v		SPARE		SPARE			

* For 2• Wire E\&M Trunk operation DO NOT connect RR and TR leads. ** Trunk Equipment Number 2 for Trunk Card only.
1.:

TABLE CI-2 (CONT'D)
SHELF 2 (SX -200 ONLY) EXTERNAL PLUG AND JACK CONNECTIONS

Pin	Pair Color	$\begin{aligned} & \text { Equipment } \\ & \begin{array}{c} \text { Numbers } \\ \text { Lines } \end{array} \end{aligned}$	Lead	Designation	Equipment Numbers Trunks	Lead Designation, Trunks			CardPosition:
						CO	[DID/TIE	E\&M*	

## PLUG P9 (Connects to Cl oss-Connect Field)

26	$\begin{aligned} & \text { W-BL } \\ & \text { BL-W } \\ & \hline \end{aligned}$	209	$\begin{array}{\|l\|} \text { T1 } \\ \text { R1 } \\ \hline \end{array}$	210**	$\begin{aligned} & \mathrm{T1} \\ & \mathrm{R} 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { T1 } \\ & \text { R1 } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{RI} \\ & \hline \end{aligned}$	
27	w-o	210	T2		XT2		TR1	
2	o-w		R2		XT1		RR1	7
28	W-G	211	T3	212	T2		E1	
3	G-W		R3		R2		M1	
29	W-BR	212	T4					
4	BR-W		R4					
30	W-S	217	TI	$218^{* *}$	T1	T1	T1	
5	s-w				R1	R1	R1	
31	R-BL	218	-		XT2		TR1	
6	BL-R		R2		XT1		RR1	8
32	R-O	219	T3	220	T2		EI	
	O-R		R3		R2		MI	
31	R-G	220	T4					
8	G-R		R4					
34	R-BR	225	T1	226**	T1	T1	T1	
9	BR-R		R1		R1	R1	R1	
35	R-S	226	T2		XT2		TR1	
10	S-R		R2		XT1		RR1	
36	BK-BL	227	T3	228	T2		El	9
11	BL-BK		R3		R2		MI	
37	BK-0	228	T4					
12	0-BK		R4					
38	BK-G	233	T1	234**	T1	T1	T1	
13	G-BK		R1		R1	R1	R1	
39	BK-BR	234	T2		XT2		TR1	
14	BR-BK		R2		XT1		RR1	
40	BK-S	235	T3	236	$T 2$		E1	10
15	S-BK		R3		R2		M1	
41	Y-BL	236	T4					
16	BL-Y		R4					
42	Y-O	241	T1	242**	T1	T1	T1	
17	O-Y		R1		61.	R1	R1.	
43	Y-G	242	T 7		XT2		TR1	
18	G-Y		R2		XT1		RR1	
44	Y-BR	243	T3	244	T2		E1	11
19	BR-Y		R3		R2		M1	
45	Y-S	244	T4					
20	S-Y		R4					
46	v-BL	249	$T 1$	250**	T1	71	T1	
21	BL-V		R1		R1	R1	R1	
47	v-o	250	T2		XT2		TR1	
22	O-v		R2		XT1		RR1	
48	V-G	251	T3	252	T2		EI	12
23	G-V		R3		R2		MI	
49	V -BR	252	T4					
24	BR-V		$R 4$					
50	V -S		SPARE		SPARE			
25	S-V		S P A R E		SPARE			

* For 2-Wire E\&M Trunk operation DO NOT connect RR and TR leads.
** Trunk Equipment Number 2 for Trunk Card only.


## SECTION MITL91 05/911 0-096-350-NA


${ }_{* k}$ For 2 -Wir E E\&M Trunn opgration DO NOT conect RR and TR leads.
Trunk Equipment Number ${ }^{2}$ for Trunk Card only.
$\because=$



* For 2-Wire E\&M Trunk operation DO NOT connect RR and TR leads.

[^5]

Notes: 1. Connector J 302 is common to the SX-100/SX-200 system.
2. See Section MITLS1 05/9110-096-450-NA. Traffic Measurement, for applications of the connectors.
$4:$

## POWER FAIL TRANSFER BOARD PLUG AND JACK CONNECTIONS

Pin	Pair Color	Lead Designation
PLUG P20   （Power Fail Transfer Connections to Cross－ Connect Field）		
26	W－BL	STATION TI
1	BL－W	STATION R1
27	w－o	LINE CARD TI
2	O－w	LINE CARD R1
28	W－G	TRUNK TI
3	G－W	TRUNK R］
29	W－BR	TRUNK CÂRD TI
4	BR－W	TRUNK CARD RI
30	w－s	STATION T2
5	s－w	STATION R2
31	R－BL	LINE CARD T2
6	BL－R	LINE CARD R2
32	R－O	TRUNK T2
7	O－R	TRUNK R2
33	R－G	TRUNK CARD T2
8	G－R	TRUNK CARD R2
34	R－BR	STATION T3
9	BR－R	STATION R3
35	R－S	LINE CARD T3
$\begin{aligned} & 10 \\ & 36 \end{aligned}$	$S-R$ BK-BL	LINE CARD R3 TRUNK T3
11	BL－BK	＂TRUNK R3
37	BK－0	TRUNK CARD T3．
12	0－BK	TRUNK CARD R3
38	BK－G	STATION T4
13	G－BK	STATION R4
39	BK－BR	LINE CARD T4
14	BR－BK	LINE CARD R4
40	BK－S	TRUNK T4
15	S－BK	TRUNK R4
41	Y－BL	TRUNK CARD T4
16	BL－Y	TRUNK CARD R4
42	Y－O	STATION T5
17	O－Y	STATION R5
43	Y－G	LINE CARD T5
18	G－Y	LINE CARD R5
44	Y－BR	TRUNK T5
19	BR－Y	TRUNK R5
45	Y－S	TRUNK CARD T5
20	S－Y	TRUNK CARD R5
46	V－BL	STATION T6
21	BL－V	STATION R6
47	v －o	LINE CARD T6
22	－－v	LINE CARD R6
48	V－G	TRUNK T6
23	G－V	TRUNK R6
49	$V-B R$	TRUNK CARD $T 6$
24	BR－V	TRUNK CARD R6
50	v －s	SPARE
25	s－v	SPARE



Note：Plug 21 is not installed on the SX－100 equipment．

> E

TABLE CI-4
CONSOLE INTERFACE BOARD PLUG AND JACK CONNECTIONS (SX-200 ONLY)


Pin	Pair Color	Lead Designation	
『LUG P23   ('Connects to Jack J15)			
26	W-BL	ELECTROSTATIC	GROUND
1	BL-W	ELECTROSTATIC	GROUND
27	w-o	ELECTROSTATIC	GROUND
2	o-w	ELECTROSTATIC	GROUND
28	W-G	ELECTROSTATIC	GROUND
3	G-W	ELECTROSTATIC	GROUND
29	W-BR	ELECTROSTATIC	GROUND
4	BR-W	ELECTROSTATIC	GROUND
30	w-s	DATA IN COMM	
5	s-w	DATA IN	
31	R-BL	ELECTROSTATIC	GROUND
6	BL-R	ELECTROSTATIC	GROUND
32	R-O	DATA OUT COM	MON
7	O-R	DATA OUT	
33	R-G	ELECTROSTATIC	GROUND
8	G-R	ELECTROSTATIC	GROUND
34	R-BR	ELECTROSTATIC	GROUND
9	BR-R	ELECTROSTATIC	GROUND
35	R-S	CUTOVER SWB	
10	S-R	CUTOVER SWA	
36	BK-BL	ELECTROSTATIC	GROUND
11	BL-BK	ELECTROSTATIC	GROUND
37	BK-0	MAJOR ALARM	
12	0-B K	MAJOR ALARM	
38	BK-G	TIP	
13	G-BK	RING	
39	BK-BR	ELECTROSTATIC	GROUND
14	BR-BK	ELECTROSTATIC	GROUND
40	BK-S	ELECTROSTATIC	GROUND
15	S-BK	ELECTROSTATIC	GROUND
41	Y-BL	ELECTROSTATIC	GROUND
16	BL-Y	ELECTROSTATIC	GROUND
42	Y-O	ELECTROSTATIC	GROUND
17	O-Y	ELECTROSTATIC	GROUND
43	Y-G	$\bigcirc \mathrm{V}$	
18	G-Y	-48 Vdc	
44	Y-BR	- v	
19	BR-Y	-48 Vdc	
45	Y-S	0 V	
20	S-Y	-48 Vdc	
46	V-BL	0 v	
21	BL-V	-48 Vdc	
47	$v$ - o	$\bigcirc \mathrm{v}$	
22	$0-\mathrm{v}$	-48 Vdc	
48	V-G	$\bigcirc \mathrm{v}$	
23	G-V	-48 Vdc	
49	V-BR	0 v	
24	BR-V	-48 Vdc	
50	v-s	0 v	
25	$s-v$	-48 Vdc	

TABLE CI-4 (CONT'D)
CONSOLE INTERFACE BOARD PLUG AND JACK CONNECTIONS (SX-200 ONLY)



[^6]

- =

Figure CI-3(a) SX-200 Connector Locations


Figure $\mathbf{C I}-3(b)$ SX-200 Connector Locations


Figure Cl-4 Power Fail Transfer Block Diagram


Figure Cl-5 Power Fail Transfer Wiring Diagram
. こ


Figure $\mathrm{Cl}-6$ Night Bell Connections

TABLE CI-6
BACKPLANE TRANSLATOR BOARD CONNECTIONS
(SHELF

1) TO CROSS-CONNECT

FIELD


Note: Position 12 can be used for lines, trunks or receiver \#4 card.

+ For 2-Wire E\&M Trunk operation 00 NOT connect RR and TR leads.

TABLE Cl－6（CONT＇D）
BACKPLANE TRANSLATOR BOARD CONNECTIONS（SHELF 1）TO CROSS－CONNECT FIELD


Note：Position 12 can be used for lines，trunks or receiver \＃4 card．
＋For 2－Wire E\＆M Trunk operation DO NOT connect RR and TR leads．

note: the pa leads are located on the scanner card.
$\because=$
$\times 5373$
Figure Cl-7 Music and PA Connections

## HARDWARE／EQUIPMENT NUMBERING

$\stackrel{\square}{\Sigma}$	PLUG 7			PlUG 8			PLUG 9			PLUG 10		
	161	169	177	185	193	201	209	217	225	233	241	249
	162	170	178	186	194	202	210	218	226	234	242	250
2	163	171	179	187	195	203	211	219	227	235	243	251
	164	172	180	188	196	204	212	220	228	236	344	252
	165	173	181	189	197	205	213	221	229	237	245	153
	166	174	182	190	198	206	214	222	230	238	246	154
	167	175	183	191	199	207	215	223	231	239	247	155
	168	176	184	192	200	208	216	224	232	240	248	156
	1	2	3	4	5	6	7	8	9	10	11	12

SHELF 2 （SX－200）


SHELF 1 SX－IOO／SX－200
note：EQUIPMENT POSITION 001 IS RESERVED FOR THE TEST LINE AND mUST
EQEREFORE BE EQUIPPED WITH A LINE CARD．TRUNK EQUIPMENT NUMBER IS SAME AS INDIVIDUAL TRUNK ACCESS CODE．

4．－

Figure Cl－8 Backplane Translator Board Plug Appearances


VOTE：Console 1 CONNECTED to J22，THROUGH P23
CONSOLE 2 ÇNNECTED TO J24．THROUGH P25

Figure Cl－9 interconnect Board Cabling

Page C－：


Figure CI-9 Interconnect Board Cabling (Cont'd)


Figure Cl-9 Interconnect Board Cabling (Cont'd)

C

## APPENDIX

## SX-100 MECHANICAL INFORMATION

## GENERAL

D1.01 The MAPs contained in this Appendix detail the procedures be performed in all mechanical work on the SX-100 systel These MAPs are used in conjunction with the MAPs outlined in oth sections of this Practice.

D1.02 Due to the similarity of the $S X-100$ system to the SX-2 system, MAPs $350-501,350-510$ and $350-511$ are common 1 both systems and these MAPs will be found in Appendix E.
DI. 03 There are three versions of the SX-100 system: rack-mounte wall-mounted and cabinet-mounted. MAP350-400 deals w exposing each of the three versions of the system for mechanis work.

D1.04 The basic synopsis of these MAPs is that if a component $h_{i}$ been found to be defective, replace it. MAPs in this Appenc describe how to replace a part which is known to be defective. LOC tion of the defective components is the topic of Appendices $F$ and 1 Parts 5 and 6.

TABLE DI-1
SX-100 MECHANICAL PROCEDURE

Title	Reference
Expose System	MAP350-400
Replace Interconnect, Power Fail Transfer and Console Interface Card	MAP350-401
Replace Equipment Shelf	MAP350-402
Replace Power Supply	MAP350-403
Replace Reserve Battery Backup Unit	MAP350-404
Replace Maintenance Panel	MAP350-405
Replace 220 V Adapter	MAP350-406


EXPOSE THE SYSTEM (SX-100)
MAP350-400
Issue 3 , May 1984
Sheet 1 of 7



## SECTION MITL9105/91 1 0-096-350-NA

EXPOSE THE SYSTEM (SX-100)
MAP350- 400
Issue 3 , May 1984
Sheet 2 of 7


$\times 561$
Figure 400-1 SX-100 Cabinet-Mount

EXPOSE THE SYSTEM (SX-100)
MAP350- 400
Issue 3. May 1984
Sheet 3 of 7


-.:

Figure 400-2 Wall-Mounting

EXPOSE THE SYSTEM	(SX-100)
MAP350- 400	
Issue 3, May 1984	
Sheet 4 of 7	

FRONT OF EQUIPMENT (FIGURE 400-2)
(4A) Remove the four 5-16 in. maintenance panel retaining screws and washers
(4B) Remove the maintenance cable tie from the side of the cabinet (4C) Remove the maintenance panel

(5A) Remove the eight 5-16 in. retaining screws and washers from the equipment shelf
(5B) Remove the ground lug wire
(5C) Remove the equipment shelf and power supply. Note that the power supply must be supported



Figure 400-3 Rear Cable View

## EXPOSE THE SYSTEM (SX-100)

MAP350-400
Issue 3, May 1984
Sheet 6 of 7

AT FRONT OF EQUIPMENT
(FIGURE 400-2)
(7A) Place equipment shelf and power supply in position
(7B) Secure equipment shelf with eight $5-16$ in. retaining screws and washers

$\times 1588$
Figure 400-4
Power Supply Cable Harness
(9A) If the system was wall-mounted, release clip on strikes and allow it to swing down gently
(98) Connect cables P1, P2, P3, P4, P18, P19, P20, J13, J14 and J15 (Figure 400-4)
(9C) Connect 5302 (optional), the maintenance panel connector and the OOT cable (Figure 400-3)
(9D) Plug power supply connector into the back of the power supply (Figure 400-4)
(9E) Secure power supply connectors with four retaining screws
(9F) Connect cable ground lug
(9G) Secure power cable with new cable ties


EXPOSE THE SYSTEM (SX-100)
MAP350-400

Issue 3, May 1984
Sheet 7 of 7

AT THE CABINET LOCATION
(10A) Replace rear cover
(10B) Secure the rear cover with four 5-16 in. retaining screws
(10C) Replace top cover
(100) Secure top cover by locking it
(10E) If the equipment was
wall-mounted, swing the cabinet up gently and secure in position with the clips on the strikes

From (9)
(11A) Connect the AC power cords to their receptacles
(11B) Turn both primary power switches on. LED on power supply panel lights
(11C) Turn battery pack switch to on (optional)
(11D) Turn shelf power to on by turning the system shelf power switch on
(11E) Close and lock front door

*.
（1A）Complete Steps（1）to（3C）of
MAP350－400
（1A）Complete Steps（1）to（3C）of
MAP350－400

AT TOP OF SYSTEM（FIGURE 401－1）
（2A）Remove P16，P17 and the maintenance panel connector
（2B）Remove power cables from the power terminal blocks．Also remove reserve battery backup connection


REPLACE INTERCONNECT，POWER
FAIL TRANSFER AND CONSOLE
INTERFACE CARD（SX－100）
MAP350－ 401
Issue 3．Mav 1984
Sheet 1 of 4



EXPOSE SYSTEM
BLOCKS

Remove the eleven 3－16 in． screws that secure the interconnect card to the chassis Remove the Interconnect card
)


Figure 401-2 Interconnect Card

REPLACE INTERCONNECT, POWER
FAIL TRANSFER AND CONSOLE
INTERFACE CARD (SX-100)
MAP350-401
Issue 3, May 1984
Sheet 3 of 4

(4A) Unpack new card from container
(48) Inspect new card for damage (Figure 401-2)
(4C) Check card type and quantity against invoice

REPLACE INTERCONNECT, POWER
FAIL TRANSFER AND CONSOLE
INTERFACE CARD (SX-100)

MAP350- 401
issue 3, May 1984
Sheet 4 of 4

(7A) Place new interconnect in position (Figure 401-I)
(7B) Secure new interconnect card with eleven 6-32 screws



Issue 3. Mav 1984
Sheet 1 of 5


AT REAR OF SYSTEM (FIGURE 402-1)
(2A) Remove the three screws that hold the power supply to the equipment shelf
(2B) Remove the power supply

The front of the Equipme
(3A) Remove the eight 5-16 in. retaining screws and finishing washers
(3B) Remove the equipment shelf carefully sliding it forward


Figure 402-1 Power Supply Mounting

REPLACE EQUIPMENT SHELF (SX-100)
MAP350-402
Issue 3, May 1984
Sheet 2 of 5

(7A) Slide new shelf into position (7B) Secure new shelf with four 5-16 in. retaining screws and finishing washers
(8A) Secure the power supply with three 3-16 in. retaining screws (Figure 402-1)

(9A) Transfer all cards as per MAP350-510

## SECTION MITL9105/9110-096-350-NA

## REPLACE EQUIPMENT SHELF (SX-100)

MAP350-402
Issue 3, May 1984
Sheet 4 of 5


FRONT VIEW


Figure 402-2 Shelf-Mounting Position


REPLACE POWER SUPPLY (SX-100)
MAP350-403
Issue 3, May 1984
Sheet 1 of 3



Figure 403-1
Power Suppiy Mounting

## SECTION MITL9105/9110-096-350-NA

REPLACE POWER SUPPLY (SX-100)
MAP350-403
Issue 3, May 1984
Sheet 2 of 3
(4A) Unpack new power supply from container
(4B) Inspect new power supply for damage
(4C) Check power supply type and quantity against invoice


Repack item in original container and return to supplier with completed section of Damage Report

REPLACE POWER SUPPLY (SX-100)
MAP350-403
Issue 3, May 1984
Sheet 3 of 3 position
(7B) Secure the power supply with three 6-32 retaining screws

(8A) Install power cables in former positions
(8B) Secure power cables with four 4-40 retaining screws
(8C) Install power supply ground

(9A) Complete Steps (9) to (11) of MAP350-400


REPLACE RESERVE BATTERY
BACKUP UNIT (SX-100)
MAP350- 404
Issue 3, May 1984
Sheet 2 of 5



Figure 404-1 SX-100 Power Terminal Blocks (Interconnect Board)

REPLACE RESERVE BATTERY
BACKUP UNIT (SX-100)
MAP350-404
Issue 3, May 1984
Sheet 3 of 5

(4A) Unpack new battery backup unit from container (Figure 404-2)
(4B) Inspect new battery backup unit
(4C) Check battery backup unit and quantity against invoice


## SECTION MITL.9105/9110-096-350-NA

REPLACE RESERVE BATTERY
BACKUP UNIT (SX-100)
MAP350- 404
Issue 3, May 1984
Sheet 4 or 5

(7A) install new reserve battery backup unit in position


AT TOP OF CABINET (FIGURE 404-1)
(8A) Connect the reserve battery backup power cable to the terminal block on the interconnect board


CONNECT
CABLES
(9A) Complete Steps (9) to (11) of MAP350-400


# REPLACE RESERVE BATTERY 

BACKUP UNIT (SX-100)
MAP350-404
Issue 3. May 1984
Sheet 5 of 5


Figure 404-2 Example of Reserve Battery Backup Unit

## PANEL (SX-100)

REPLACE MAINTENANCE

MAP350-405
Issue 3, May 1984
Sheet 1 of 5
(1A) Complete Steps (1) to (2A) of MAP350-400

AT TOP OF SYSTEM (FIGURE 405-1)
(2A) Unplug the maintenance panel connector from the interconnect board
(2B) Release the maintenance panel cable tie from side of cabinet
(2C) Remove maintenance panel connector


## SECTION MITL9105/9110-096-350-NA

REPLACE MAINTENANCE
PANEL. (SX-100)
MAP350- 405
Issue 3, May 1984
Sheet 2 of 5



Figure 405-1 Maintenance Panel Connector

REPLACE MAINTENANCE   PANEL (SX-100)
MAP350-405
Issue 3, May 1984
Sheet 3 of 5



AT FRONT OF EQUIPMENT (FIGURE 405-2)
(6A) Install new maintenance panel in position
(6B) Secure maintenance panel with four 5-16 in. retaining screws
and finishing washers

## SECTION MITL9105/9110-096-350-NA

REPLACE MAINTENANCE   PANEL (SX-100)
MAP350- 405
Issue 3, Mav 1984
Sheet 4 of 5



FRONT VIEW


REPLACE MAINTENANCE
PANEL (SX-100)
MAP350-405
Issue 3, May 1984
Sheet 5 of 5

From (6)

AT TOP OF EQUIPMENT (FIGURE 405-1)
(7A) Install the maintenance panel connector on the interconnect board
(7B) Secure cable with new cable tie
(7C) Connect maintenance panel connector

INSTALL MAINTENANCE PANEL CONNECTOR
(8A) Complete Steps (9) to (11) of MAP350-400


COMPLETE ALL MECHANICAL WORK AND POWER UP THE SYSTEM

REPLACE 220 V ADAPTER (SX-100)
MAP350-406
Issue 3, May 1984
Sheet 1 of 4

(1A) Complete Steps (1) to (5) of MAP350-400

(2A) Remove the system power cord from the 220 V adapter
(2B) Remove the 220 V adapter to its location


REMOVE THE 220 V ADAPTER
(3A) Unpack the new 220 V adapter from container
(3B) Inspect new 220 V adapter for damage
(3C) Check new 220 V adapter type and quantity against invoice

## SECTION MITL9105/9110-096-350-NA

REPLACE 220 V ADAPTER (SX-100)
MAP350-406
Issue 3, May 1984
Sheet 2 of 4
(6A) Place the new 220 V adapter in position
(6B) Secure the 220 V adapter into its position
(6C) Plug system power cord into 220 V adapter


REPLACE 220 V ADAPTER (SX-100)
MAP350-406
Issue 3, May 1984
Sheet 3 of 4


Figure 406-1 220 V Adapter

## SECTION MITL9105/9110-096-350-NA

REPLACE 220 V ADAPTER (SX-100)
MAP350-406
issue 3, May 1984
Sheet 4 of 4


## APPENDIX E

SX-200 MECHANICAL PROCEDURES

## general

E1.01 The MAPs contained in this Appendix detail the procedures to be performed in all mechanical work on the SX-200 system. These MAPs are used in conjunction with the MAPs outlined in other sections of this Practice. They will facilitate ease of replacement of component parts.

E1.02 The basic synopsis of this Appendix is that if a component part has been judged to be defective by the use of the MAPs, replace it.

TABLE E1-1
SX-200 MECHANICAL PROCEDURE

Title	Reference
Replace Console and/or Console Cable	MAP350-501
Replace Interconnect Card	MAP350-502
Replace Power Fail Transfer Card	MAP350-503
Replace Console Interface Card	MAP350-504
Replace First or Second Shelf	MAP350-505
Replace Heat Sink Assembly	MAP350-506
Replace Power Supply Assembly	MAP350-507
Replace Reserve Battery Backup Supply	MAP350-508
Replace Backplane Translator Board	MAP350-509
Replace Cards in Shelf	MAP350-510
Replace Maintenance Panel	MAP350-511
Replace Wiring Harness	MAP350-512

## REPLACE CONSOLE AND/OR

 CONSOLE CABLE (SX-200)MAP350-501
Issue 3, May 1984
Sheet 1 of 4


## SECTION MITL9105/9110-096-350-NA

REPLACE CONSOLE AND/OR   CONSOLE CABLE (SX-200)
MAP350-501
Issue 3. May 1984
Sheet 2 of 4



Figure 501-2
(6A)
Construct and run a new console cable as per Appendix B


CONSTRUCT A NEW CABLE

REPLACE CONSOLE AND/OR CONSOLE CABLE (SX-200)

MAP350-501
Issue 3, מीay 1984
Sheet 3 of 4
(7A) Position and press home console connector
(7B) Secure connector to console with the securing screw

(8A) Install new cable tie


REPLACE CONSOLE AND/OR   CONSOLE CABLE (SX-200)
MAP350-501
Issue 3, May 1984
Sheet 4 of 4



REPLACE INTERCONNECT
CARD (SX-200)
MAP350-502
Issue 3, May 1984
Sheet 1 of 7

TOOL REQUIRED
1 flatblade screwdriver



AT REAR OF CABINET
(2A) Remove cables J13, J14, J15, P16, P17, P18 and P19 (Figure 502-3)
(2B) Remove cable from RS-232 port (optional)
(2C) Remove OOT cable and maintenance panel connectors
(2D) Remove power cable from terminal block


AT THE REAR OF THE CABINET
(3A) Loosen cable clamps so that the cables have approximately 25 cm (10 in.) of slack (Figure 502-1)
at FRONT OF CABINET
(FIGURE 502-2)
(3B) Unscrew eight $1-4 \times 3-8$ retaining screws from the front of the equipment sheives
(3C) Pull equipment shelves forward PULL SHELVES approximately 5 cm ( 2 in .)

## SECTION MITL9105/9110-096-350-NA

REPLACE INTERCONNECT   CARD (SX-200)
MAP350- 502
Issue 3, May 1984
Sheet 2 of 7



Figure 502-1 Rear Door Cable Locations

REPLACE INTERCONNECT CARD (SX-200)

MAP350-502
Issue 3, May 1984
Sheet 3 of 7


Figure 502-2 Equipment Shelf

## SECTION MITL9105/9110-096-350-NA

REPLACE INTERCONNECT   CARD (SX-200)
MAP350-502
Issue 3, May 1984
Sheet 4 of 7

(4A) Remove the six 1-4 x 3-8 in.
screws that secure Interconnect
card
Remove the Interconnect card
(4B)
(5A) Unpack card from container
(5B)
Inspect card for physical
damage (Figure 502-3)
(5heck card type and quantity
against invoice

REPLACE INTERCONNECT   CARD (SX-200)
MAP350- 502
Issue 3, May 1984
Sheet 5 of 7



Figure 502-3 Interconnect Card

REPLACE INTERCONNECT   CARD (SX-200)
MAP350-502
issue 3. May 1984
Sheet 6 of 7


(8A) Place Interconnect card in position (Figure 502-1)
(8B) Secure card with six $1-4 \times$ 3-8 in. screws


AT THE FRONT OF THE CABINET
(9A) Push shelves back into original position
(9B) Secure the shelves with eight $1-4 \times 3-8$ in. finishing screws and washers
(9C) Secure cables in cable clamps


REPLACE INTERCONNECT   CARD (SX-200)
MAP350-502
Issue 3, May 1984
Sheet 7 of 7

(10A) Plug in cables J13, J14, J15, P16, P17, P18 and P19 (Figure 502-1)
(10B) Replace cable from RS-232 port (optional)
(10C) Replace OOT cable and maintenance cable connectors
(100) Replace power cable in terminal block

From (9)

(11A) Turn system power switch ON
(118) Close and lock front door
(11C) Set battery switch to ON
(11D) Close and lock rear panel assembly and rear door
(11E) Replace power cables into commercial AC source
(11F) Set all power switches on rear door to ON


FINISH

```
REPLACE POWER FAIL
TRANSFER CARD (SX-200)
```

MAP350-503
Issue 3, May 1984

Sheet 1 of 7
TOOL REQUIRED
1 flathead screwdriver

AT REAR OF CABINET
(2A) Remove power cable from terminal block from Power Fail Transfer card

AT REAR OF CABINET
(3A) Loosen all cable clamps so that the cables have approximately 25 cm (10 in.) of slack (Figure 503-11
AT FRONT OF CABINET
(FIGURE 503-2)
(38) Unscrew eight $1-4 \times 3-8$ in. retaining screws from the front of the equipment shelves
(3C) Pull equipment shelves forward approximately $5 \mathrm{~cm}(2 \mathrm{in}$.)
(3D) Unplug J20 and J21 if used

## REPLACE POWER FAIL

TRANSFER CARD (SX-200)
MAP350-503
Issue 3, May 1984
Sheet 2 of 7
咀:


Figure 503-1 Cables

REPLACE POWER FAIL TRANSFER CARD (SX-200) MAP350-503

Issue 3, May 1984
Sheet 3 of 7


Figure 503-2 Equipment Shelf

SECTION MITL9105/9110-096-350-NA

REPLACE POWER FAIL
TRANSFER CARD (SX-200)
MAP350-503
Issue 3, May 1984
Sheet 4 of 7


(5A) Unpack card from container
(5B) Inspect card for physical damage (Figure 503-3)
(5C) Check card type and quantity against invoice

Repack item in original container and return to supplier with completed section of Damage Report

REPLACE POWER FAlL
TRANSFER CARO (SX-200)
MAP350-503
Issue 3. May 1984
Sheet 5 of 7



NOTE: FOR CABLE INFORMATION, SEE APPENDIX C

Figure 503-3 SX-200 Interconnect Card

REPLACE POWER FAIL
TRANSFER CARD (SX-200)
MAP350-503
Issue 3, May 1984
Sheet 6 of 7

(8A) Place new Power Fail Transfer card in position (Figure 503-1)
(8B) Secure card with six 1-4 $X$ 3-8 in. screws
(8C) Secure cables in cable clamps


REPLACE POWER FAIL
TRANSFER CARD (SX-200)
MAP350-503
Issue 3, May 1984
Sheet 7 of 7

(10A) Plug in cables P20 and P21
(10B) Replace power cable in terminal
block on Power Fail Transfer
card
(11A) Turn system power switch ON (11B) Close and lock front door (11C) Set battery switch to ON
(11D) Close and lock rear panel assembly and rear door
(11E) Replace power cables into commercial AC source
(11F) Set all power switches on rear door to ON

REPLACE CONSOLE
INTERFACE CARD (SX-200)
MAP350-504
Issue 3, May 1984
Sheet 1 of 5


TOOLS REQUIRED
1
$1 / 4$ inch Screwdriver
$17 / 16$ inch wrench

1A) Unlock and open front door
(1B) Unlock and open rear door
(1C) Unlock and open rear panel assembly
(1D) Set system power switch to OFF
(1E) Set all power switches on rear door to OFF
(1F) Set battery switch to OFF
(1G) Remove power cable(s) from commercial AC source
(2A) Remove cables J22, P23, J24 and P25
at rear of the cabinet
(3A) Loosen all cable clamps so that the cables have approximately 25 cm (10 in.) of slack (figure 504-1)
AT FRONT OF CABINET

## (FIGURE 504-2)

(3B) Unscrew eight $1-4 \times 3-8$ inch retaining screws from the front of the equipment shelves
(3C) Pull equipment shelves forward approximately 5 cm ( 2 in .)


1ST CONSOLE INTERFACE CARD


Figure 504-1 Console Interface Card Position

REPLACE CONSOLE
INTERFACE CARD (SX-200)
MAP350-504
Issue 3, May 1984
Sheet 2 of 5



Figure 504-2 Equipment Shelf

## SECTION MITL9105/9110-096-350-NA

REPLACE CONSOLE
INTERFACE CARD (SX-200)
MAP350-504
Issue 3, May 1984
Sheet 3 of 5

(4B) Remove card ground from ground lug
(4C) Remove Console Interface card

Remove Console Interface card

5A) Unpack cards from containers
(5B) Inspect cards for physical damage (Figure 504-3)
(5C) Check card type and quantity against invoice


## SECTION MITL9105/9110-096-350-NA

REPLACE CONSOLE
INTERFACE CARD (SX-200)
MAP350-504
Issue 3, May 1984
Sheet 4 of 5

(8A) Place new Console Interface card into position (Figure 504-1) Secure Console Interface card with four 8-32 $\times 3-8$ inch screws
(8C) Secure card ground on system ground lug

AT THE FRONT OF THE CABINET
(9A) Push shelves back into original position
(9B) Secure the shelves with sixteen 1-4 $\times 3-8$ inch finishing screws and washers
(9C) Secure cables in cable clamps


Tag defective item, repack in original container and return to supplier with completed section of

Damage Report

REPLACE CONSOLE
INTERFACE CARD (SX-200)
MAP350-504
issue 3, May 1984
Sheet 5 of 5

(10A) Plug in cables J24 and P25

(11B) Close and lock front door
(11C) Set battery switch to ON
(11D) Close and lock rear panel assembly and rear door
(11E) Replace power cables into commercial AC source
(11F) Set all power switches on rear door to ON

REPLACE FIRST OR
SECOND SHELF (SX-200)
MAP350-505
Issue 3, May 1984
Sheet 1 of 8


TOOLS REQUIRED
1 flatblade screwdriver
1 Phillips screwdriver

(1A) Unpack new shelf
(1B) Check backplane for cracks and bent pins
(1C) Check hardware against packing slip
(1D) Check fuses (if supplied)


## SECTION MITL9105/9110-096-350-NA

REPLACE FIRST OR
SECOND SHELF (SX-200)
MAP350- 505
Issue 3, May 1984
Sheet 2 of 8



REPLACE FIRST OR
SECOND SHELF (SX-200)
MAP350-505
Issue 3, May 1984
Sheet 3 of 8

(7A) Remove all cards as per MAP350-510

AT FRONT OF CABINET (FIGURE 505-2)
(8A) Remove eight $1-4 \times 3-8$ inch finishing screws and washers
(8B) Remove shelf



NOTE: THERE IS A SURGE CLAMP ON BOTH SHELVES. SURGE CLAMPS ON SECOND SHELF NOT SHOWN. SECOND SHELF SURGE CLAMP IN SAME POSITIONS as first shelf clamp.

Figure 505-1 SX-200 Intershelf Cables

REPLACE FIRST OR
SECOND SHELF (SX-200)
MAP350-505
Issue 3, Mav 1984
Sheet 5 of 8



Figure 505-2 SX-200 Cabinet

SECTION MITL9105/9110-096-350-NA

REPLACE FIRST OR
SECOND SHELF (SX-200)
MAP350-505
Issue 3, May 1984
Sheet 6 of 8



Figure 505-3 P104 Backplane Connections

REPLACE FIRST OR
SECOND SHELF (SX-200)
MAP350-505
Issue 3, May 1984
Sheet 7 of 8


REPLACE FIRST OR
SECOND SHELF (SX-200)
MAP350- 505
Issue 3, May 1984
Sheet 8 of 8

AT REAR OF THE EQUIPMENT CABINET
(13A) Replace shelf to shelf cables if two shelf cables (J101, J102, J 103 and J104) (Figures 505-1 and 505-31
(138) Connect cables P1, P2, P3, P4, P5 and P6 if shelf 1 is replaced. Connect cables P7, P8, P9, P10, P11 and P12 if shelf 2 is replaced
(13C) Connect power cables to TB1-TB2 and intershelf power cables
(13D) Install surge clamp (Figure 505-1)

Replards in original slots as per MAP350-510

(15A) Turn system power switch to ON (15B) Close and lock front door (15C) Set battery switch to ON
(150) Close and lock rear panel assembly and rear door
(15E) Replace power cables into commercial AC source
(15F) Set all power switches on rear door to ON

CLOSE AND
LOCK DOORS AND POWER UP SYSTEM

REPLACE HEAT SINK
ASSEMBLY (SX-200)
MAP350-506
ISSue 3, May 1984
Sheet 1 of 4


TOOL REQUIRED
$11 / 4$ inch slotted blade screwdriver



AT REAR OF CABINET (FIGURE 506-1)
(2A) Remove Canon-type connector from heat sink assembly
(2B) Remove terminal block strip from TB3

REPLACE HEAT SINK
ASSEMBLY (SX-200)
MAP350-506
Issue 3, May 1984
Sheet 2 of 4



Figure 506-1 SX-200 Rear Door

REPLACE HEAT SINK
ASSEMBLY (SX-200)
MAP350-506
Issue 3. May 1984
Sheet 3 of 4

(4A) Unpack new heat sink assembly from container
(4B) Inspect heat sink for physical damage
(4C) Check heat sink assembly type and quantity against invoice


REPLACE HEAT SINK
ASSEMBLY (SX-200)
MAP350- 506
Issue 3, Mav 1984
Sheet 4 of 4



REPLACE POWER SUPPLY
ASSEMBLY (SX-200)
MAP350-507
Issue 3, May 1984
Sheet 1 of 5

1 TOOLS REQUIRED
1
1 wrench
1 flatblade screwdriver


(1A) Unlock and open front door
(1B) Unlock and open rear door
(1C) Unlock and open rear panel assembly
(1D) Set system power switch to OFF
(1E) Set all power switches on rear door to OFF
(1F) Set battery switch to OFF
(1G) Remove power cable(s) from commercial AC source

at Cabinet rear door
(FIGURE 507-1)
(2A) Remove rear panel with a 11-32 in. nutdriver
(2B) Repeat Steps (2) and (3) of MAP350-506
(2C) Disconnect Ground Lug (Figure 507-2)
(2D) Disconnect Reserve Battery Connections (Figure 507-2) if connected

(3A) Release the four retaining screws from the rear door retaining bar
(3B) Slide retaining bar up, releasing the rear door
(3C) Support power supply unit final removal
ing

REPLACE POWER SUPPLY
ASSEMBLY (SX-200)
MAP350-507
Issue 3, May 1984
Sheet 2 of 5



Figure 507-1 SX-200 Rear Door


Figure 507-2 Reserve Power Supply Connections

REPLACE POWER SUPPLY
ASSEMBLY (SX-200)
MAP350-507
Issue 3. May 1984
Sheet 4 of 5

(4A) Unpack new power supply assembly from container
(4B) Inspect power supply assembly for physical damage
(4C) Check power supply type and quantity against invoice

(7A) Place new power supply assembly in place
(7B) Lower power supply retaining bar and tighten four 1-4 X 3-8 inch retaining screws


INSTALL NEW POWER SUPPLY ASSEMBLY
(8A) Install heat sink assembly as per MAP350-506 Steps (7) and (8)
(8B) Connect Ground Lug (Figure 507-2)
18C) Connect Reserve Power Supply (Figure 507-2) if supplied
(8D) Secure rear panel with 11-32 inch nutdriver

(9A) Turn system power switch to ON
(9B) Close and lock front door
(9C) Set battery switch to ON
(9D) Close and lock rear panel assembly and rear door
(9E) Replace power cables into commercial AC source
(9F) Set all power switches on rear door to ON

LOCK DOORS
AND POWER UP
SYSTEM
SYSTEM

REPLACE RESERVE BATTERY
BACKUP SUPPLY (SX-200)
MAP350-508
Issue 3, May 1984
Sheet 1 of 8


TOOLS REQUIRED
1 wrench
1 flatblade screwdriver



AT CABINET REAR DOOR
(FIGURE 508-1)
(2A) Turn battery pack circuit breaker off
(2B) Disconnect reserve power supply ground lug
(2C) Disconnect all reserve power supply connections
(2D) Loosen the cable clamp and remove the $A C$ power cord
(1A) Unlock and open front door
(1B) Unlock and open rear door
(1C) Unlock and open rear panel assembly
(1D) Set system power switch to OFF
(1E) Set all power switches on rear door to OFF
(1F) Set battery switch to OFF
(1G) Remove power cable(s) from commercial AC source


AT FRONT OF EQUIPMENT
(FIGURE 508-2)
(3A) Remove the four 1-4 $\times 3$ 3-8 inch finishing screws and washers from the front panel of the battery pack
(3B) Remove the reserve battery backup supply by sliding it forward carefully



Figure 508-1 Reserve Power Supply

REPLACE RESERVE BATTERY
BACKUP SUPPLY (SX-200)
MAP350-508
Issue 3, May 1984
Sheet 3 of 8



REAR VIEW
Figure 508-2 SX-200 Cabinet

## SECTION MITL.9105/9110-096-350-NA

REPLACE RESERVE BATTERY
BACKUP SUPPLY (SX-200)
MAP350- 508
Issue 3, May 1984
Sheet 4 of 8


(5A) Unpack new reserve battery backup from container
(5B) Inspect new reserve battery backup for damage
(5C) Check reserve battery backup type and quantity against invoice

REPLACE RESERVE BATTERY   BACKUP SUPPLY (SX-200)
MAP350-508
Issue 3, May 1984
Sheet 5 of 8



REPLACE RESERVE BATTERY
BACKUP SUPPLY (SX-200)
MAP350-508
Issue 3, May 1984
Sheet 6 of 8

AT REAR OF CABINET (FIGURE 508-1)
(10A) Connect ground lug
(10B) Connect all wiring as per Figure 508-1
(10C) Feed AC cable through cable duct and secure with the cable clamp
(10D) Turn battery pack circuit breaker on
(10E) Connect alarm wiring if required as per Figure 508-4

(11A) Turn system power switch to ON
(11B) Close and lock front door
(11C) Set battery switch to ON
(11D) Close and lock rear panel assembly and rear door
(11E) Replace power cables into commercia! AC source
(11F) Set all power switches on rear door to ON

正暗	REPLACE RESERVE BATTERY BACKUP SUPPLY (SX-200)
¢	MAP350-508
	Issue 3, May 1984
	Sheet 7 of 8



NOTE: PLUG IS LINEO UP FOR INSERTION INTO RECEPYACLE CORRESPONDING TO 110 INPUT POWER.
.

Figure 508-3 Voltage Setting Board and Plug

REPLACE RESERVE BATTERY
BACKUP SUPPLY (SX-200)
MAP350- 508
Issue 3. May 1984
Sheet 8 of 8


Figure 508-4 Alarm Indicator Connections

REPLACE BACKPLANE
TRANSLATOR BOARD (SX-200)
MAP350-509
Issue 3. May 1984
Sheet 1 of 4


TOOL REQUIRED
1 flatblade screwdriver

at cabinet rear door
(FIGURE 509-1)
(2A) Unscrew the two $4 \times 40$ screws from the amphenol-type connector
(2B) Unplug cables in pairs: P2 or P8 and P1 or P7, P3 or P9 and P4 or P10
Unlock and open front door
(1B) Unlock and open rear door
(1C) Unlock and open rear panel assembly
(1D) Set system power switch to OFF
(1E) Set all power switches on rear door to OFF
(1F) Set battery switch to OFF
(1G) Remove power cable(s) from commercial AC source

(3A) Remove the four $4 \times 40$ slotted retaining screws
(3B) Remove the translator board


- =

REPLACE BACKPLANE
TRANSLATOR BOARD (SX-200)
MAP350-509
Issue 3, May 1984
Sheet 2 of 4



Figure 509-1 Translator Board

REPLACE BACKPLANE
TRANSLATOR BOARD (SX-200)
MAP350-509
Issue 3, May 1984
Sheet 3 of 4

(4A) Unpack new translator board from container
(4B) inspect new translator board for damage
(4C) Check new translator board type and quantity against invoice


REPLACE BACKPLANE
TRANSLATOR BOARD（SX－200）
MAP350－ 509
Issue 3，May 1984
Sheet 4 of 4

（7A）Place new translator board firmly in place（push in firmly）
（7B）Secure translator board with four $4 \times 40$ slotted retaining screws

（8A）Connect cables P1－P7，P2－P8， P3－P9 and P9－P10
（8B）Secure all cables with one 4－40 slotted retaining screw
（9A）Turn system power switch to ON
（98）Close and lock front door
（9C）Set battery switch to ON
（9D）Close and lock rear panel assembly and rear door
（9E）Replace power cables into commercial AC source
（9F）Set all power switches on rear door to ON
．$=$
CLOSE AND LOCK DOORS AND POWER UP SYSTEM

REPLACE CARDS IN   SHELF $(S X-200)$
MAP350- 510
Issue 3, May 1984
Sheet 2 of 5



REAR VIEW
Figure 510-1 SX-200 Cabinet

REPLACE CARDS IN
SHELF (SX-200)
MAP350-510
Issue 3, May 1984
Sheet 3 of 5



Figure 510-2 Maintenance Panel

REPLACE CARDS IN
SHELF (SX-200)
MAP350-510
Issue 3, May 1984
Sheet 4 of 5



REPLACE CARDS IN
SHELF（SX－200）
MAP350－ 510
Issue 3，May 1984
Sheet 5 of 5

（9A）Turn shelf power back on
（9B）Close and lock front door


CARD
Extractor
$\times 3370 R 1$
Figure 510－3 Typical Circuit Card

REPLACE MAINTENANCE
PANEL (SX-200)
MAP350-511
Issue 3, May 1984
Sheet 1 of 3
(1B) Unlock and open front door
(1C) Unlock and open rear panel assembly
(1D) Set system power switch to OFF
(1E) Set all power switches on rear door to OFF
(1F) Set battery switch to OFF
(1G) Remove power cable(s) from commercial AC source


AT REAR OF EQUIPMENT CABINET
(2A) Disconnect maintenance panel cable from interconnect card
(2B) Cut tie wrap from top of cabinet

..

REPLACE MAINTENANCE   PANEL (SX-200)
MAP350-511
Issue 3, May 1984
Sheet 2 of 3




REPLACE MAINTENANCE
PANEL (SX-200)
MAP350-511
issue 3, May 1984
Sheet 3 of 3

AT FRONT OF EQUIPMENT CABINET
(7A) Place new maintenance panel in place
(7B) Secure the maintenance panel with four 3-32 finishing screws and washers

(8A) Install the maintenance panel connector on the Interconnect card
(8B) Secure with new cable tie


CONNECT CABLE
(9A) Turn system power switch to ON
(9B) Close and lock front door
(9C) Set battery switch to ON
(9D) Close and lock rear panel assembly and rear door
(9E) Replace power cables into commercial AC source
(9F) Set all power switches on rear door to ON

-E

REPLACE WIRING HARNESS (SX-200)
MAP350-512
Issue 3, May 1984
Sheet 1 of 5

TOOL REQUIRED
1 flatblade screwdriver

(1A) Unlock and open front door
(1B) Unlock and open rear door
(1C) Unlock and open rear panel assembly
(1D) Set system power switch to OFF
(1E) Set all power switches on rear door to OFF
(1F) Set battery switch to OFF
(1G) Remove power cable(s) from commercial AC source

at back of equipment cabinet
(2A) Unscrew Canon connector
(2B) Cut all cable ties associated with the power cable
(3A) Disconnect all terminal blocks on Power Fail Transfer cards, Interconnect card and Shelf Backplanes (Figure 512-2)
(38) Cut all cable ties


DISCONNECT TERMINAL BLOCKS
4.

REPLACE WIRING HARNESS (SX-200)
MAP350-512
Issue 3. May 1984
Sheet 2 of 5


$\times 1569$
Figure 512-1 SX-200 Rear Door

REPLACE WIRING HARNESS (SX-200)
MAP350-512
Issue 3, Mav 1984
Sheet 3 of 5

(4A) Unpack new power cable from container
(4B) Inspect new power cable for damage
(4C) Check power cable type and quantity against invoice

REPLACE WIRING HARNESS (SX-200)
MAP350-512
Issue 3. May 1984
Sheet 4 of 5
(7A) Install new power cable in correct position using new cable ties
(7B) Secure terminal blocks on Backplanes, Interconnect card and Power Fail Transfer card (Figure 512-1)
(7C) Secure cable with new cable ties

(8A) Connect Canon type connector (Figure 512-1)

(9A) Turn system power switch to ON
(9B) Close and lock front door
(9C) Set battery switch to ON
(9D) Close and lock rear panel assembly and rear door
(9E) Replace power cables into commercial AC source
(9F) Set all power switches on rear door to ON
$\because=$

Page E-72

Issue 3, May 1984
Sheet 5 of 5


Figure 512-2 Wiring Diagram

## APPENDIX F

POWER CHECKS

## General

F1.01 This Appendix consists of a series of MAPs which will be directly referenced by the charts of Part 6, SX-100/SX-200 Power Supply. The Appendix is also referenced directly by the tables of Part 5, Report Troubleshooting and Cross-Reference.

F1.02 These MAPs describe how to measure the electrical voltages in key areas of the $S X-100 / S X-200$ system. The measurements will aid the repair person in the location of a specific fault. At all times the repair person should follow the safety precautions suggested in the MAPs to ensure personal and equipment safety.

F1.03 Table F1-1 is a listing of all power checks that may be performed when troubleshooting an SX-100/SX-200 system:

- MAP350-600, deals with the SX-200 system power supply only. This map deals primarily with the system not running or a major power failure.
- MAP350-601 deals with a suspected power failure on or at the Interconnect card of the SX-200 system.
- MAP350-602 deals with a suspected power failure on the Power Fail Transfer card where the system may or may not be in a transfer condition.
- MAP350-603 deals with the voltages that appear on the terminal blocks of the backplanes in an $S X-100 / S X-200$ system.
- MAP350-604 outlines the procedure for checking the voltage on the SX-200 Reserve Battery Backup.
- MAP350-605 outlines the procedure for checking the voltages to the combined Console Interface, Power Fail Transfer and Interconnect card of the SX-100 system.
- MAP350-606 outlines the procedure for checking the voltage on the SX-100 Reserve Battery Backup.

TABLE F1-1 POWER CHECKS

SX-200			
	MAP	SX-100	MAP
Power Supply Check	$350-600$	Interconnect Card	$350-605$
Interconnect Card	$350-601$	Reserve Battery Backup	$350-606$
Power Fail Transfer Card	$350-602$		
Backplane(s) $-\quad 350-603$			
Reserve Battery Backup	$350-604$		

－＝

POWER SUPPLY CHECK (SX-200)
MAP350-600
Issue 3, Mav 1984
Sheet 1 of 6


TOOLS REQUIRED
1 AC/DC Voltmeter
1 trouble lamp


(2A) Check that the $A C$ power cord is plugged in
(2B) Check the AC power fuse (Figure 600-1). If the fuse is blown, replace it with one of equal value. If it blows again, replace the power supply as per MAP350-507
(2C) Plug a trouble light for other piece of equipment) into the outlet as a test for the presence of $A C$ voltage. If no voltage is present, check for a faulty $A C$ outlet

ON THE POWER SUPPLY DOOR
(4A) Check that the converter 20 Amp circuit breaker is in the ON position. If it is off, flip it to the ON position


## SECTION MITL9105／9110－096－350－NA

POWER SUPPLY CHECK（SX－200）
MAP350－600
Issue 3，May 1984
Sheet 2 of 6

－＝

Figure 600－1 SX－200 Back Door Electrical Schematic


POWER SUPPLY CHECK（SX－200）
MAP350－600
Issue 3，May 1984
Sheet 4 of 6



## Figure 600－2

 Terminal Block 3（9A）Check the backplane voltages （reference to ground）as per Figure 600－3


POWER SUPPLY CHECK (SX-200)
MAP350-600
Issue 3, May 1984
Sheet 5 of 6

(11A) If the system still has an apparent power fault, contact your nearest authorized. MITEL service representative

$\because=$

POWER SUPPLY CHECK (SX-200)
MAP350-600
Issue 3, May 1984
Sheet 6 of 6



Figure 600-3 Backplane Voltages SX-200

INTERCONNECT CARD (SX-200)
MAP350-601
Issue 3, May 1984
Sheet 1 of 8


TOOL REQUIRED
1 AC/DC Voltmeter



(2A) Check the console fuse on the Interconnect card (Figure 601-1)


- =

INTERCONNECT CARD（SX－200）
MAP350－601
Issue 3，May 1984
Sheet 2 of 8



Figure 601－1 Interconnect Card

INTERCONNECT CARD（SX－200）
MAP350－601
Issue 3，May 1984
Sheet 3 of 8
（4A）Power down the system by turning the converter input breaker on the rear door off
（4B）Carefully remove the fuse and replace it with one of equal value
（4C）Power up the system by turning the converter input breaker on

（6A）Unplug the console cable （6B）Power down the system by turning the converter input breaker on the rear door off
（6C）Carefully remove the fuse and replace it with one of equal value
（6D）Power up the system by turning the converter input breaker to ON

4．

Go to（7）

## SECTION MITL9105/9110-096-350-NA

INTERCONNECT CARD (SX-200)
MAP350- 601
issue 3, Mav 1984
Sheet 4 of 8



8A) Install the console cable only. Disconnect the console from the cable
". :

INTERCONNECT CARD (SX-200)
MAP350-601
Issue 3, May 1984
Sheet 5 of 8



Page F-13

INTERCONNECT CARD (SX-200)
MAP350-601
issue 3, May 1984
Sheet 6 of 8


.. =

INTERCONNECT CARD (SX-200)
MAP350-601
Issue 3, May 1984
Sheet 7 of 8



INTERCONNECT CARD (SX-200)
MAP350-601
Issue 3. May 1984
Sheet 8 of 8

(21A) If the system still has an apparent Interconnect card power problem, contact your nearest authorized MITEL service representative
*. -

POWER FAIL TRANSFER CARD
(SX-200)
MAP350-602
Issue 3, May 1984
Sheet 1 of 5
(1A) Unlock and open the rear panel (1B) Unlock and open the power supply door


TOOL REQUIRED
1 AC/DC Voltmeter

CAUTION
SYSTEM POWER WILL BE ON.

POWER FAIL TRANSFER CARD   (SX-200)
MAP350-602
Issue 3, May 1984
Sheet 2 of 5

(4A) Power down the system by turning the converter input breaker on the rear door to OFF Carefully remove the fuse and replace it with one of equal value
(4C) Power up the system by turning the converter input breaker on the rear door to ON


AT THE POWER FAIL
TRANSFER CARD
(6A) Measure all voltages with respect to ground as per Figure 602-1
$\cdots-$

## POWER FAIL TRANSFER CARD

 (SX-200)MAP350-602
Issue 3, May 1984
Sheet 3 of 5

-I.

Figure 602-1 Power Fail Transfer Card

POWER FAIL TRANSFER CARD   (SX-200)
MAP350- 602
Issue 3, May 1984
Sheet 4 of 5



POWER FAIL TRANSFER CARD   (SX-200)
MAP350-602
Issue 3, Mav 1984
Sheet 5 of 5



BACKPLANE(S) (SX-200)
MAP350-603
Issue 3, May 1984
Sheet 1 of 4

TOOL REQUIRED
1 AC/DC Voltmeter


(2A) Unlock and open rear panel
(2B) Unlock and open the power supply door
-


NOTE: THERE IS A SURGE CLAMP ON BOTH SHELVES. SURGE CLAMPS ON SECOND SHELF NOT SHOWN. SECOND SHELF SURGE CLAMP IN SAME POSITIONS AS FIRST SHELF CLAMP.

Figure 603-1 Backplane Voltages

BACKPLANE(S) (SX-200)
MAP350-603
Issue 3, May 1984
Sheet 3 of 4
(6A) Perform the power checks in MAP350-600 (SX-200) and MAP350-605 (SX-200)
(8A) Replace the power supply as per MAP350-507 (SX-200) and MAP350-403 (SX-100)

BACKPLANE（S）（SX－200）
MAP350－603
Issue 3．May 1984
Sheet 4 of 4

（10A）If the system still has an apparent power fault in the backplane（s），contact your nearest authorized MITEL service representative

[^7]
## POWER FAIL TRANSFER CARD

(SX-200)
MAP350-604
Issue 3. May 1984
Sheet 1 of 3

TOOL REQUIRED
$1 \mathrm{AC} / \mathrm{DC}$ Voltmeter

CAUTION
SYSTEM POWER WILL BE ON.


TABLE 604-1

TB	PIN	WIRE   COLOR	SIGNAL   NAME	MINIMUM   ACCEPT-   ABLE	MAXIMUM   ACCEPT-   ABLE
TB2	2	RED	+BATT	0	0
TB2	3	BLACK	-BATT	-45 Vde	-52 Vde

at rear of reserve
BATTERY BACKUP
(2A) Ensure that batteries have been charging for at least 24 hours
(2B) Measure voltages as Figure 604-1

POWER FAIL TRANSFER CARD   (SX-200)
MAP350-604
Issue 3, May 1984
Sheet 2 of 3




Figure 604-1 Reserve Power Supply

INTERCONNECT CARD (SX-100)
MAP350-605
Issue 3, May 1984
Sheet 1 of 9



## SECTION MITL9105/9110-096-350-NA

INTERCONNECT CARD (SX-100)
MAP350-605
Issue 3, May 1984
Sheet 2 of 9



FRONT VIEW


Figure 605-1 The SX-100 System

INTERCONNECT CARD (SX-100)
MAP350-605
Issue 3. May 1984
Sheet 3 of 9



SECTION MITL9105/9110-096-350-NA

INTERCONNECT CARD (SX-100)
MAP350-605
Issue 3, May 1984
Sheet 4 of 9



INTERCONNECT CARD (SX-100)
MAP350-605
Issue 3. May 1984
Sheet 5 of 9



Figure 605-3 Interconnect Card

INTERCONNECT CARD (SX-100)
MAP350- 605
Issue 3. May 1984
Sheet 6 of 9



INTERCONNECT CARD (SX-100)
MAP350-605
Issue 3. Mav 1984
Sheet 7 of 9

(14A) Measure all voltages as per Figure 605-3

(16A) Measure +8 Vdc (OOT) on the white-green wire of P303


## SECTION MITL9105/9110-096-350-NA

INTERCONNECT CARD (5X-100)
MAP350-605
Issue 3, May 1984
Sheet 8 of 9



INTERCONNECT CARD (SX-100)
MAP350-605
Issue 3, May 1984
Sheet 9 of 9



## RESERVE BATTERY BACKUP (SX-100)

MAP350-606
Issue 3, May 1984
Sheet 1 of 3

TOOL REQUIRED
$1 \mathrm{AC} / \mathrm{DC}$ Voltmoter


(2A) Measure voltages as per Figure 606-1

(1A) Complete Steps (1) and (2) of MAP350-400


## SECTION MITL9105/9110-096-350-NA

RESERVE BATTERY BACKUP (SX-100)
MAP350- 606
Issue 3, May 1984
Sheet 2 of 3



Figure 606-1 Reserve Battery Backup

RESERVE BATTERY BACKUP (SX-100)
MAP350-606
Issue 3. May 1984
Sheet 3 of 3



## APPENDIX G TROUBLESHOOTING MAPs

## GENERAL

G1.01 The MAPs contained in this Appendix detail the procedures to be performed in all actual card troubleshooting on the system. These MAPs are used in conjunction with the MAPs outlined in other sections of this Practice. Due to the similarity of the SX-100 and SX-200 systems, all the MAPs of this Appendix are common to each system.

G1.02 Table G1-1 is a listing of all MAPs contained in this Appendix.

TABLE G1-1
TROUBLESHOOTING

Title	Reference
Common Control Test	MAP350-701
Speech Path Test	MAP350-702
Cabling Test	MAP350-703
Paging Test	MAP350-704
Night Bell Test	MAP350-705
Music-on-Hold Test	MAP350-706


COMMON CONTROL TEST
MAP350- 701
Issue 3, May 1984
Sheet 1 of 4


(3A) Unlock and open the front door (3B) Remove the card retaining bar


COMMON CONTROL TEST
MAP350- 701
Issue 3, May 1984
Sheet 2 of 4



COMMON CONTROL TEST
MAP350-701
Issue 3, Mav 1984
Sheet 3 of 4

(8A) Change the Common Control cards one at a time with the system power off at each card change
(8B) Press the MASTER RESET button on the Scanner card after each power up
(8C) Continue Steps (8A) and (8B) until all cards have been replaced


COMMON CONTROL TEST
MAP350-701
Issue 3, May 1984
Sheet 4 of 4


(12A) If the system still has an apparent card fault, contact your nearest authorized MITEL service representative


SPEECH PATH TEST
MAP350- 702
Issue 3. Mav 1984
Sheet 1 of 4


(2A) Remove all Receiver cards as shown in MAP350-510 Press the MASTER RESET button on the Scanner card
(1A) Unlock and open the front door (1B) Remove the card retaining bar

$$
\longrightarrow
$$



EXPOSE CARDS

## SECTION MITL9105/9110-096-350-NA

SPEECH PATH TEST
MAP350- 702
Issue 3. May 1984
Sheet 2 of 4

(4A) Leave the Receiver cards out of the system
(4B) Turn off the system power on the maintenance panel
(4C) Replace the Tone Control card (see MAP350-510) with a known (good) spare


Replace the Console Control card (see MAP350-510) with a known good spare
(6B) Press the MASTER RESET button on the Scanner card


## SECTION MITL.9105/9110-096-350-NA

SPEECH PATH TEST
MAP350- 702
Issue 3, May 1984
Sheet 4 of 4

Issue 3, May 1984
Sheet 4 of 4


CABLING TEST
MAP350-703
Issue 3. May 1984
Sheet 1 of 1

(3A) Replace or repair suspect cable


REPLACE CABLE

AT THE CROSS-CONNECT FIELD
(1A). Clip a butt-in on the check points indicated by Figure 704-1 and listen for audio after dialing the access code
(1B) Check the continuity of the cable by measuring the DC resistance of the circuit. The resistance of the paging transformer is 40 ohms (test point 1, Figure 704-1)

(3A) Measure for 300 ohm DC resistance test point 2 (Figure 704-1), after the paging access code has been dialed


## PAGING TEST

MAP350-704
Issue 3, May 1984
Sheet 2 of 5
(5A) Turn off the system power at the maintenance panel
(5B) Replace the Scanner card (see MAP350-510)
(5C) Turn on the system power at the maintenance panel
(5D) Reset the system by pressing the MASTER RESET button on the Scanner card


PAGING TEST
MAP350-704
Issue 3, May 1984
Sheet 3 of 5



1	20.45
1	18.43
2	22.47
2	23.48

note: the pa relay contacts are located on the scanner card.

Figure 704-1 Music and PA Connections

PAGING TEST
MAP350- 704
Issue 3. May 1984
Sheet 4 of 5

(8A) Check test line programming to ensure access to the Paging Feature
(8B) Replace Scanner card with a known (good) spare. Return to Step (6A). If Step (6A) fails again, go to Step (8).
(10A) Replace the Interconnect card and all Interconnect cables as per MAP350-401 for the SX-100 system or MAP350-502 for the SX-200 system


PAGING TEST
MAP350-704
Issue 3, May 1984
Sheet 5 of 5

(12A) If the system still has an apparent paging fault, contact your nearest authorized MITEL service representative


FINISH

NIGHT BELL TEST
MAP350-705
Issue 3. May 1984
Sheet 1 of 3


NIGHTBELL TEST
MAP350- 705
Issue 3. May 1984
Sheet 2 of 3



night bell relay direct


MTERCONNECT BOARD PLUG P18							
PIN	DESTINATION	P1*	DESTIRLATION	PIN	DESTINATION	PIN	DESTINATION
46	NIGHT BELL 1 Kı	44	NGHT BEL 2 K2	50	NIGHT BELL 3 K3	49	NIGHT SERVICE A K4
21	NIGHT BELI 1 R(K1)	19	NICHT SEl 2 R(K2)	25	NGHT BELL 3 R(K3)	24	NIGHT SERVICE B(K4)

NOTES: 1. THE FACHITY IS WRED TO EITHER THE SX-100 OR SX-200
TERMINAL BLOCKS AS MOICATED BY THE DASHED LBNES.
2. THE NIGHT SERVICE REAY K4 CONTACTS ARE IDENTICAL TO THE NIGHT BELL CONTACT ARRANGEMEHTS. IT MAY BE USED TO OPERATE A LAMP TO SHPW WHEN THE SYSTEM IS wN NIGHT SERVICE OR SIGNAL THE CO FOR THIS CONDITION.

Figure 705-1 Night Bell Connections

MUSIC-ON-HOLD TEST
MAP350-706
Issue 3, May 1984
Sheet 1 of 4


TOOLS REQUIRED
$1 \mathrm{AC} / \mathrm{DC}$ Voltmeter
1 ohm meter

## NOTE

The term Buzz Pairs may be done with a buzz box or an ohmmeter.
(1A) Check music source at cross-connect field with a butt-in to ensure music is supplied


CHECK MUSIC SOURCE
(3A) Check for music with a butt-in on pins 17 and 42 of P18


## SECTION MITL9105/9110-096-350-NA

MUSIC-ON-HOLD TEST
MAP350- 706
Issue 3, May 1984
Sheet 2 of 4

(SA) Disconnect P18
(5B) Measure for approximately 40 ohms DC on pins 17 and 42 of J 18 (receptacle for P18)


MUSIC-ON-HOLD TEST
MAP350-706
Issue 3, May 1984
Sheet 3 of 4

(7A) Disconnect P17
(7B) Check for 40 ohms DC on pins 46 and 21 of P17

(9A) Disconnect P5
(9B) Check for 40 ohms DC on pins 46 and 21 of J5

MUSIC-ON-HOLD TEST
MAP350-706
Issue 3, May 1984
Sheet 4 of 4


(11A) If the system still has an apparent Music-on-Hold fault, contact your nearest MITEL service representative

# APPENDIX H <br> THE SUPERSET 4 SET 

## GENERAL

Introduction
H1.01 This Appendix describes the general, physical and electrical characteristics of the SUPERSET 4 set.

H1.02 It also includes a brief description of the major features, and the installation and maintenance considerations. Other details are included in the MITEL Practices listed in Table H1-1.

## GENERAL DESCRIPTION

H1.03 The SUPERSET 4 set is an advanced microprocessor-controlled telephone set, employing digitally controlled integrated circuitry and liquid crystal displays (LCDs).

H1.04 The SUPERSET 4 set is intended for use with the $S X$ -100/SX-200 Generic ACD system.

H1.05 The SUPERSET 4 set provides:
(a) User confidence in handling incoming or outgoing calls, through application of visual word prompts automatically displayed on a LCD. These prompts signify all valid call-handling options at any given time.
(b) User capability to make the fullest use of all system features in the assigned Class of Service, by means of the visual word prompts mentioned above.
(c) Single button feature activation.
(d) Multiline appearances (installer-programmed) of up to 15 lines including primary line (set directory number). Multiline appearances may be a mixture of system lines and trunks, and may also be multi-appearances of the same line.
(e) Speed call entry at each unassigned line (not associated with system speed call feature).
(f) Visual line or trunk status indication by means of LCD symbols adjacent to each line select button.
(g) Automatic selection of primary line.

	TABLE H1-1   RELATED MITEL PRACTICES	
Section No.	Title	
MITL9105/9110-096-107-NA		
MITL9105/9110-096-180-NA		
MITL9105/9110-096-200-NA	SUPERSET 4 Features and Services Description	
MITL9105/9110-096-320-NA		

(h) Pushbutton selection of nonprimary line.
(i) Automatic ringing line selection (System programmed option).
(j) Hold function for any call at the set.
(k) Ease of installation. No power supply required other than that derived from the system and distributed through the line. Line connection by means of modular jack. Only 2 -wire local area wiring required. Turn key installation. Only nonessential user programming required.
(I) User programming of timed reminder, call forward destination number and speed call entry.
(m) 16-character alphanumeric display for time-of-day and date (provided by system), digit echoing, speed call number, call forward destination number, timed-reminder setting, caller identification and messages from the system.
(n) Handsfree operation, with switchable microphone.
(o) Volume controls for ringer and loudspeaker.
(p) Ringer pitch control.

## PHYSICAL DESCRIPTION

## General

H1.06 The SUPERSET 4 set body and handset are of plastic construction. The dimensions of the SUPERSET 4 set, with handset on-hook, are given in Figure H1-1.

H1.07 The body and handset are interconnected via a modular detachable handset cord, plugged into the side of the body. Line connection to the set is by means of a captive 2-wire line cord, terminated in a modular plug.

## Body

H1.08 The body of the SUPERSET 4 set comprises two parts - a base assembly and a cover assembly (see Figure H1-2).

Base Assembly
H1.09 The base assembly contains a microphone (for handsfree operation), the switchhook and a modular jack for the handset cord. The microphone is mounted in a position permitting it to receive sound passing through an aperture in the front of the base assembly.

H1.10 A screwdriver slotted control for adjusting ringer pitch is useraccessible underneath the base assembly.

## Cover Assembly

H1.11 The cover assembly houses a volume control assembly, a speaker assembly (for handsfree operation), a keypad module, and a line selection/repertory dial module.

## Volume Control Assembly

H1.12 Two volume controls, one each for speaker and ringer, are mounted in the upper left-hand corner of the cover assembly. The controls are edge-mounted and are identified with a printed card insert. This card also has space for the installation telephone number, and is held in place by a transparent plastic lens that is clipped in position.

## Speaker Assembly

H1.13 A loudspeaker is mounted under a grille that occupies space beneath the handset.

## Keypad Module

H1.14 The keypad module contains a standard 12-button keypad, six feature buttons and four supplementary feature buttons.

## Line Selection/Repertory Dial Module

H1.15 The line selection/repertory dial module contains 15 line select buttons, a hold button, a LCD repertory display and a LCD feature display.

H1.16 Associated with the buttons and the repertory display is a line identification card. This card identifies the primary line (extension) and hold buttons and provides space for function identification (i.e., line and speed call identities) of the remaining buttons. The card is held in place with a transparent plastic lens that is clipped in position.


Figure H1-1 The SUPERSET 4 Set Dimensions


Figure H1-2 The SUPERSET 4 Set

## FUNCTIONAL DESCRIPTION

## General

H1.17 For a description of the SUPERSET 4 set, see Section MITL9105/ 9110-096-100-NA.

## INSTALLATION AND MAINTENANCE CONSIDERATIONS

CAUTION: INSTALLERS SHOULD NOT ATTEMPT TO USE A BUTT-IN ON THE SUPERSET 4 LINES, AS NO LINE VERIFICATION CAN BE MADE AND LINE CARD OPERATION MAY BE AFFECTED. A SUPERSET 4 SET CANNOT BE USED AS A POWER FAIL TRANSFER EXTENSION.

## Installation

H1.18 Installation of the SUPERSET 4 set is simplified because of the following:
(a) Handset and line cords are modular-connector-ended.
(b) Line cord is captive.
(c) No local power supply is required. Power is provided by the system and distributed through the line.
(d) Only nonessential user programming is required (i.e., speed call entry, call forward destination, name and timed reminder).
(e) Installers can use set display feature to identify lines programmed to appear at the set.
(f) Initialization of the SUPERSET 4 set occurs automatically when power is applied to the set.

H1.19 Instaliation of a SUPERSET 4 set into a powered-up system consists of:

- Assembly of handset, handset cord and main body of the SUPERSET 4 set.
- Connection of line cord to local modular jack.
- Verifying initialization procedures have been executed. This should take approximately 10 s .
- When procedures are complete, time and date are displayed.
- Identification of customer telephone number and lines appearing at the set.
- Performance of installer loop test procedures. This verifies transmission and reception paths and key and display operation.


## Operating Environment

H1.20 Ambient Temperature: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$.
H1.21 Ambient Humidity: 10 to $90 \% \mathrm{RH}$, noncondensing.
Maintenance

H1.22 No regular or scheduled maintenance is required and no field repairs may be effected. Performance of the installer loop test procedure can be carried out at any time to check out set operation.

H1.23 The installer loop test procedure is performed at the SUPERSET 4 set. After dialing the loop test access code, the installer can confirm correct key operation, liquid-crystal display activation, hookswitch functioning and ringer (speaker) output.

# APPENDIX I <br> THE SUPERSET 3 SET 

## general

## Introduction

11.01 The SUPERSET 3 set provides the following operational features:

- Single button feature activation.
- Multiline appearances (installer-programmed) of up to three lines including primary line (set directory number). Multiline appearances may be a mixture of lines and trunks, and may also be multi-appearances of same line.
- Speed Call.
- Automatic selection of primary line.
- Pushbutton selection of nonprimary line.
- Automatic ringing line selection (programmed option).
- Hold function for any call at the SUPERSET 3 set.
- User programming of call forward destination number and speed call entry.
- Handsfree operation, with switchable microphone.
- Volume controls for ringer and loudspeaker.
- Ringer pitch control.
11.02 The SUPERSET 3 set provides the following installation features:
- Turn-key installation. Connection to local area wiring by means of a modular jack.
- No additional wiring - power, signaling and voice carried over a single pair. Additional pair required only if Call Announce service is set up.
11.03 In addition, the SUPERSET 3 set provides user confidence in handling incoming or outgoing calls. The user makes the fullest use of all features in the user's assigned Class of Service by various key assignments.
11.04 The SUPERSET 3 body and handset are of plastic construction. The dimensions of the SUPERSET 3 set, with handset on-hook, are given in Figure 11-1. The body and handset are interconnected via a modular detachable handset cord, plugged into the side of the body. Line connection to the set is by means of a modular detachable line cord, plugged into the rear of the set. An optional rear support can be clipped in position beneath the set. This would be used when the set is likely to be placed some distance from the user.



## Body

11.05 The body of the SUPERSET 3 set comprises two parts - a base assembly and a cover assembly.

## Ease Assembly

11.06 The base assembly contains a microphone (for handsfree operation), the switchhook, modular jacks for the handset and line cords and a speaker assembly (for handsfree operation and tone ringer output). The microphone is mounted in a position permitting it to receive sound passing through an aperture in the front of the base assembly. The speaker is mounted between the handset recesses and projects sound upwards through a grill beneath the handset. A screwdriver slotted control for adjusting ringer pitch is user-accessible underneath the base assembly.

## Cover Assembly

11.07 The cover assembly houses a volume control assembly, a keypad module and a line selection/repertory dial module.

## Volume Control Assembly

11.08 The volume control for the speaker and ringer, is mounted on the left-hand side of the cover assembly. There is also a paper for the installation telephone number, which is held in place by a plastic lens that is clipped in position.

## Keypad Module

11.09 The keypad module contains a standard 12-button keypad, seven feature buttons and three supplementary line select buttons.

## Line Selection/Repertory Dial Module

11.10 The line selection/repertory dial module contains three line select buttons and LED line status display. In addition there are 12 Speed Call keys.
11.11 Associated with the keys and the line status display is a line identification card. The card identifies the primary line (extension) and hold buttons and provides space for function identification (i.e., line and speed call identities) of the remaining buttons. The card is held in place with a transparent plastic lens that is clipped in position.

## Functional Description

11.12 The SUPERSET 3 set face layout is shown in Figure 11-2: The following text describes the function of each button and display. All buttons are noninterlocking.


## Line Select/Speed Call Buttons

11.13 There are three line select keys which can be configured (at the time of programming) to select preassigned lines, in order to receive or originate calls. In addition there are 12 Speed Call keys.

## Hold Button

11.14 This button allows the set user to hold any call at the set. The line on which the call is held is indicated by the adjacent line status display flashing on and off. The call may be retrieved by pressing the HOLD key.

## Feature Buttons

11.15 There are six feature buttons. Each button is associated with a specific feature. The user selects the feature, or action, by pressing the appropriate feature button.

## Supplementary Feature Buttons

11.16 Speaker on/off. This button allows the set user to receive or originate calls without use of the handset. Pressing the button once switches the speaker and microphone on and selects the prime line. Each time this button is pressed, the speaker and microphone are switched alternately on and off, and the set is switched between onand off-hook conditions.
11.17 Mic on/off. This switch is used to switch the microphone off during handsfree operation, in order to either prevent transmission of local sound or improve reception when the set is installed in a noisy environment.
11.18 SWAP. The SWAP key allows the user to effect a Broker's Call between two calls.
11.19 TRANS/CONF. This key allows the user to put a call on Hold, dial a new number and conference the call or transfer the Call on Hold to the new number.
11.20 REDIAL. This key when pressed automatically redials the last manually dial trunk call.
11.21 CANCEL. This key cancels any dial action performed at the SUPERSET 3 set.
11.22 PROGRAM/SAVE. This key allows the user to program and save Speed Call dial numbers at specified speed dial key locations.


[^0]:    $\dagger$ During power-up sequence only.

[^1]:    . $=$

[^2]:    - 

[^3]:    - 

[^4]:    ..

[^5]:    ..

[^6]:    - =

[^7]:    －

